دانلود مقاله-تحقیق-پروژه-کارآموزی

مرجع کامل خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

دانلود مقاله-تحقیق-پروژه-کارآموزی

مرجع کامل خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

تحقیق بررسی نفت و اهمیت آن

تحقیق بررسی نفت و اهمیت آن در 56 صفحه ورد قابل ویرایش
دسته بندی مواد و متالوژی
بازدید ها 5
فرمت فایل doc
حجم فایل 56 کیلو بایت
تعداد صفحات فایل 56
تحقیق بررسی نفت و اهمیت آن

فروشنده فایل

کد کاربری 6017
کاربر

تحقیق بررسی نفت و اهمیت آن در 56 صفحه ورد قابل ویرایش


مقدمه

نفت خام مایعی است که از تعدادی هیدروکربن و مقداری ترکییات گوگردی اکسیژن دار، ازته و مقدار کمی ترکیبات معدنی و فلزات تشکیل شده است . ترکیبات مختلف نفت خام بنا به موقعیت محلی میدان نفتی و زمان تشکیل آن و حتی بنا به ژرفای منبع مـتغیرند .

در یک جزوه نفتی همراه نفت خام همواره مقداری گاز ، آب و نمک و شن و ماسه وجود دارد که این مواد بر اساس چگالی روی هم انباشته می گردند . نحوة قرار گرفتن آنها بدین شکل است که در زیر یک لایة غیر قابل نفوذ ابتدا آب و نمک ، سپس نفت خان .و بر روی آن گازها قرار دارند .

نفت خام پس از استخراج به واحد بهره برداری انتقال داده شده که در این واحد نفت خام را با عبور از جدا کننده ها و کاهش تدریجی فشار ، از گاز همراه با آن عاری می سازند . سپس در واحد نمک زدایی ، آب و نمک ، شن و ماسة آن را جدا ساخته و در صورت ترش بودن نفت خام ( حاوی گازهای اسیدی مانند ، ، RSH و …. ) آن را در استریپرها [1] با یک گازشیرین تماس داده و را جدا می کند کلیة این اعمال بر ای جلوگیری از خوردگی تجهیزات پالایش می باشد.

طراحی پالایشگاه را بر اساس اجزاء تشکیل دهنده نفت خام مورد استفاده صورت می گیرد . در ضمن با افزایش مدت زمان استخراج از یک حوزة نفتی کیفیت نفت تغییر کرده و به طور معمول مقدار گوگود و آن افزایش می یابد . در نتیجه با تغییر خوراک پالایشگاه نیاز است که شرایط عملیاتی تغییر کند که این تغییرات بر اساس نتایج حاصل از ارزیابی نفت خام صورت می گیرد.
2 ـ واحد ارزیابی نفت خام

هدف از انجام کلیه آرمایشات در واحد ارزیابی نفت خام ، ارزیابی و تعیین مشخصات نقت خام های ایران و کشورهای همسایه که برای امور صادرات و طراحی پالایشگاهها مورد استفاده قرار می گیرد ، است .

از جمله کارهای این واحد ، تقطیر نفت خام و بدست آوردن فرآورده های سبک تا سنگین که به ترتیب حلالها و بنزین و نفت سفید و گازوئیل و روغنها می باشند که مشخصات فیزیکی و شیمیایی و ترمودینامیکی آنها مطابق روشهای استاندارد انجام می شود و همچنین حلالهای نفتی مورد نیاز صنایع در این واحد ساخته می شود.

تواناییهای این واحد علاوه بر موارد فوق در خصوص قسمتهای استاندارد به شرح زیر می باشد:

1. تقطیرهای ASTM و IP جهت تهیة برشهای کوتاه و تعیین نقاط جوش و تحت خلاء تا 001/0 میلی باد و تا نفاط جوش حدود 800 .
2. تعیین دانسیته ، وزن مخصوص ، گوگرد ، اسیدیته و گرانروی مایعات ، گازها و جامدات.
3. تعیین مقدار هیدروکربنتهای آروماتیکی ، نفتینکی، الفینی و پارافینی ( نرمال رایزو)
4. تعیین وزن مولکولی ،‌ فشار بخار ، باقیمانده ، کربن ، مقدار واکس و نقطة ذوب آن و خاکستر در نفت خام و فرآوردها
5. تعیین مقدار نمک، آب و رسوبات در نفت خام .
6. تعیین اندازه ذرات جامد معلق در مایعات و غلظت آنها.
7. تعیین ضریب رسانش ، PH‌ ، ارزش حرارتی ، مقاومت اکسیداسیون مایعات .
8. تصفیه روغن های خام و تعیین پارامترهای کنترل کیفیت بخصوص اندیس گرانروی ، قسمت رنگ فرآورده ها و نمرة برومین .
9. تعیین عددستان ، اندیش دیزل ، نقطة آنیلین ، نقطة آتش گیری ،‌ نقطة اشتعال ، نقطة ابری شدن ، نقطه انجماد ، نقطة ریزش و دمای بسته شدن فیلتر گازوئیل بر روی سوختهای نفت سفید و دیزل.
10. تست نوار خوردگی مس ، نقره ، خوردگی فلزات بر روی سوختها و ضدیخ.

معمولاً هر پالایشگاه دارای یک آزمایشگاه کنترل کیفیت است که در آنها آزمایشهایی بر روی فرآورده های مختلف میانی یا نهایی به دو منظور انجام می شود:

تشخیص صحت کار واحدهای تولید به طور سریع
اطمینان از مطابقت فرآورده های نهایی با استانداردهای مربرطه

برای انجام این آزمایشها ، دستگاهها و روشهای استاندارد بکار می رود . بطوریکه نتایج به راحتی قابل تکرار و مقایسه باشند . عمدتاً از روشهای ASTM و در مواردی IP ، BP ، DIM و …. استفاده می شود.

در این گزارش به برخی از مهمترین آزمایشها اشاره می شود.
چگالی ( دانسیته )‌

دانسیته هیدروکربن ها همیشه کمتر از یک است و با افزایش تعداد کربن ، این مقدار در یک سری همولوگ افزایش می یابد . در صورتی که سیستم ها به ترتیب هیدورکربن های اشباع شدة غیر حلقوی ـ اشباع شده حلقوی ـ و آروماتیک باشد . به ازاء تعداد معین کربن دانسیته نیز افزایش می یابد.
مقایسه دانسیته هیدروکربتهای مختلف در درجه حرارت ثابت

دانسیته نفت که مخلوطی از هیدروکربن ها ست بستگی به مواد سازنده آن دارد و به همین لحاظ است که نفت کشورهای مختلف دارای دانسته های متفاوت است . . مثلاً دانسیته نفت آمریکا . 87/0 ـ 800/0 ، نفت ایران در 60 ، 836/0 و نفت و رسید 900/0 ـ 850/0 می باشد.

معمولاً دانسیته در دمای 60 اندازه گیری می شود . برای اندازه گیری SG معمولاً از هیدرومتر و پکنومتر و یا دانسیته مترهای اتوماتیک استفاده می شود. برای اندازه گیری SG معمولاً از هیدرومتر پیکنومتر و یا دانسیته مترهای اتوماتیک استفاده می شود . برای برش های نفتی چگالی به شکل کمیت API نیز بیان می شود : API بوسیله انستیتو نفت آمریکا پیشنهاد شده است و در کشورهای آمریکایی مقدار دانسیته بر حسب آن داده می شود.




روش ASTM

این آزمایش برای اندازه گیر یدانسیته تقطیبر شدههای نفتی در فاصلة دمایی 15 نت 35 درجه سانتیگراد مناسب می باشد . نمونة مورد استفاده باید مایع با فشار بخار کمتر از mmHg 600 و دیسکوزیته کمتر از 15000 در دمای مورد آزمایش باشد . در ضمن نمونه نباید خیلی تیره باشد . بنابراین این نمونه های نفت خام برای این آزمایش مناسب نیستند . این دستگاه دانسیته را با واحد نشان می دهد.
شرح آزمایش

پس از کالیبره کردن دستگاه توسط آب مقطر و هوا و تنظیم دمای 56/15‌، لوله خرطومی شکل داخل دستگاه با با بهترین شستشو می دهیم . و توسط پمپ هوا داخل آن را خشک می کنیم . لامپ دستگاه را روشن نموده و توسط سرنگ، نمونه را داخل لوله تزریق می کنیم . این عمل باید به گونه ای صورت گیرد که هیچ گونه حبابی داخل لوله تشکیل نشود . زیرا حبابهای هوا بر روی دانسیته تأثیر گذاشته و ایجاد خطا می کند . سپس لامپ دستگاه را خاموش می کنیم ( نور نیز در انجام آزمایش خطا ایجاد می کند .) بر اساس تغییر فرکانس موج وارد شده به نمونه نسبت به حالت مبنا ، تعداد دانسیته اندازه گیری می شود . هنگامی که این مقدار به یک حد ثابتی رسید .عدد نشان داده شده را یادداشت می کنیم .
روش

این تست برای اندازه گیری نقطة دود نفت سفید ، از روی ارتفاع شعله حاصل از سوختن آن قبل از ایجاد دوده ، بکار می رود.

شرح آزمایش فتیلة استاندارد این روش را در نفت سفید به خوبی تر می کنیم تا کاملاً ‎آغشته به آن گردد . سپس فتیله را از جایگاه فلزی ( لوله ای شکل ) مخصوص دستگاه عبور می دهیم . سر فتیله را به شکل نیم کره در آورده و به آن شعله می دهیم . توسط پیچ تنظیم شعله، می دهیم . توسط پیچ تنظیم شعله ، و ارتفاع شعله را افزایش می دهیم . آخرین ارتفاعی از شعله که دود از روی دودکش دستگاه بر نمی خیزد ، را به عنوان نقطه‌ دود گزارش می کنیم . این ارتفاع را از روی صفحة درجة بندی شده موجود درشت شعله می خوانیم .
نقطه ریزش

هر گاه برش نقتی بدون تکان دادن سرد گردد به درجه حرارتی که در آن میکرو کریستال ها تشکیل یا کدروتی در برش مشاهده شود ، « نقطه کدری » گفته می شود . اگر عمل سرد نمودن ادامه یا به زمانی می رسد که اگر لوله آزمون را به حالت افقی قرار دهیم برش دیگر در آن جابجا نشده و نمی ریزد ( نقطه انجماد ). حال اگر لوله آزمون را به ملایمت گرم نمائیم لحظه ای می رسد که برش در لوله سیالیت خود را باز می یابد . درجه حرارت مربوط به این تغییر حالت : نقطه ریزش گفته می شود ، درجه حرارت نقطه جرای شدن ( ریزش ) معمولاً چند درجه بالاتر از درجه حرارت نقطه انجماد برش است دانایی این نقطه کمک به شناسایی نسبت درصد هیدروکربنهای با نقطه انجماد بالا را در برش مربوطه می نماید . با اطلاع از مقادیر دو نقطه فوق ، حدود استفاده برش ها ( بخصوص هنگام پمپاژ زمستان ) تعیین می گردد.
روش ASTM D97

این تست برای تعیین نقطة ریزش ، بر روی کلیة محصولات نفتی قابل اجرا است . با این روش پایین ترین دمایی که محصول جامد نشده و قابل استفاه است را تخمین می زنیم . یکی دیگر از کاربردهای این روش ، یافتن میزان قابلیت جریان نه مانده های نفتی در دماهای خاص می باشد.
شرح آزمایش

ابتدا نمونه رادر یک بشر ریخته و در یک حمام تا دمای 45 گرم می کنیم تا تمام اجزای سنگین واکسی و … ذوب شده و نمونه هموژن شود . سپس داخل آن یک دماسنج گذاشته و در حمام آب سرد ( حدود 4 و 2- ) قرار می دهیم . تا وقتی روی آن ببندد و سخت شود و حالت سیالیت خود را از دست بدهد . این دما را از روی
دماسنج می خوانیم و 3 به آن می افزاییم و به عنوان نقطه ریزش این دما را گزارش می کنیم.
نقطه انجماد

تعیین نقطة جوش فرآورده های نفتی بسته به نوع کاربرد آنها مهم می باشد . به عنوان مثال در مورد بنزین هواپیما ، نقطة انجماد نباید بالاتر از 60- باشد زیرا در فضای بالای اتمسفر که درجه حرارت به این حدود می رسد حتی تشکیل بلورهای خیلی ریز می تواند موجب بسته شدن راه عبور بنزین از فیلترها گردد و اختلالاتی بوجود آورد . لذا بنزین هواپیما باید عاری از هیدرو کربنهایی باشد که قبل از این درجه حرارت متبلور می گردند و به همین علت مقدار بنزین در بنزین هواپیما محدود است.
روش

هدف بدست آوردن نقطة انجماد بنزین هواپیما و سوخت جت مانند نفت سفید که حاوی مقدار کمی آب است می باشد.
روش آزمایش

مقدار cc25 از نمونه را داخل لوله آزمایش دو جداره مخصوص ریخته و همزن برونزی فنر مانند را که توسط یک اهرم حرکت بالا پایین دارد ، داخل آن قرار می دهیم . دماسنجی نیز در ان می گذاریم . سپس در جدارة خارجی لوله آزمایش ،‌ هوا مایع می ریزیم و جهت جلوگیری از تأخیر در انجماد مرتباً نمونه را بوسیله همزن برونزی هم می زنیم . ابتدا یک حالت ابری در نمونه ایجاد می شود که به آن cloud point گوییم . ولی دمایی که اولین کریستال بر روی همزن بوجود می آید را یادداشت می کنیم . سپس نمونه یخ زده را از ظرف هوا مایع خارج کرده و می گذاریم تا به آرامی گرم شود .درجه حرارتی که آخرین ذره نور تشکیل شده بر روی همزن ناپدید گردید را نیز یادداشت می کنیم.

این دو دما را مقایسه می کنیم اگر به اندازه 5/0 یا کمتر با هم اختلاف داشته باشند ، درجه حرارتی را که اولی یادداشت کردیم را به عنوان نقطة انجماد گزارش می کنیم . اگر این اختلاف بیشتر از 5/0 باشد باید آزمایش را دوباره تکرار کنیم.
ترکیبات گوگرد دار
مقدمه

توزیع گوگرد در قسمتهای مختلف نفت خام اول بار توسط Mabery در سال 1891 مورد مطالعه قرار گرفت . به طور کلی درصد گوگرد با افزایش نقطة جوش بالا می رود یعنی قسمتهای با نقطة جوش بالاتر دارای نسبت درصد بیشتری گوگرد است . نفت ثابت شده است که در موقع تجزیه مولکولها در عمل تقطیر ( که معمولاً اتفاق می افتد ) اجزاء با درون مولولی متوط بیش از قسمت سنگین تر گوگرد را نگه می دارد . این موضوع مخلف توزیع عادی گوگرد در نفت خام است . معمولاً بیش از 90 % گوگرد در قسمت نفت گاز و باقیمانده جمع شده است .

نسبت درصد گوگرد زیاد در اکثر فرآورده های نفتی مضر است و یا تبدیل آنها به مواد بی ضرر ، قسمت مهم کار پالایشگاه را تشکیل می دهد . وجود ترکیبات گوگردی در بنزین به علت خورندگی که در قسمتهای موتر ایجاد می نماید مضر تشخیص داده شده و مخصوصاً در شرایط زمستانی به علت جمع شدن محلول در آب که در نتیجة احتراق بدست می آید در محوطة میل لنگ موجب خورندگی بسیار می شود . به علاوه مرکایتانهای محلول در مواد نفتی مستقیماً در مجاورت و موجب خورندگی مس و برنج می شود.
مقدمه

آسفالتین هیدروکربن های بسیار سنگین چند حلقه ای ـ تشکیل از حلقه های آروماتیکی و نفتنیکی ـ هستند که حاوی مقداری گوگرد ، نیتروژن ، اکسیژن و فلزاتی چون سدیم ، کلسیم ، آهن ، نیکل و وانادیم می باشند.

آسفالتین ها سیاه رنگ و شکننده هستند و نسبت کربن و هیدروژن آنها بالاست ( حدود %6 ـ 5 وزن مولکولی آنها را هیدروژن تشکیل می دهد در حالی که در دیگر هیدروکربن ها حدود 14% وزن آنها معمولاً از هیدروژن است . چون نمی توان این مواد را از طریق تقطیر از سایر هیدروکربن ها جدا کرد ، بنابراین از روش استخراج با حلال استفاده می شود . آسفالتین ها در حلالهای آروماتیکی به خوبی حل می شوند ولی در حلالهای آلیفاتیکی حل نمی شوند بنابراین برای جداسازی آنها می توان از پردیان تاهپتان استفاده کرد . البته هر چه وزن مولکولی حلال کمتر باشد حلالیت آسفالین در آن کمتر است . به طوریکه حلالیت آسفالتین در اتان از همه کمتر است ولی از آنجا که در برشهای روغنی به غیر از آسفالتین مواد دیگری نیر رسوب می کنند ، اتان ماده مناسبی برای جداسازی آسفالتین از برشهای روغنی نیست . در صنعت از پروپان استفاده می شود و در آزمایشگاه از پنتان و هگزان و هپتان . در ضمن آسفالتین ها در تولوئن داغ و بترن نیز محلولند.

رابطة میان قدرت رسوب دهندگی آسفالتین و جرم مولکولی حلالهای هیدروکربنی
روش IP

این تست برای گازوئیل ، سوخت دیزل ، ته مانده های سوختهای نفتی ، نفتیهای روغنی و قیر که به دمای 260 رسیده اند ، می باشد . در این روش از حلال هپتان استفاده می شود .
شرح آزمایش

ابتدا تقطیر نفت خام تا دمای 260 صورت می گیرد . سپس مقدار باقی مانده جمع آوری شده و وزن می شوند . زیرا مرحلة اول تخمین میزان آسفالتین موجود در نمونه و یا دانستن مقدار ته مانده های نفت برای تخمین حجم تخمین حجم فلاسک و مقدار هپتان لازم از روی جداول داده شده می باشد . اگر مقدار آسفالتین تخمینی در نمونه بیشتر از 25/0 باشد حداقل ml 25 هپتان لازم است . هر چه مقدار آسفالتین کمتر باشد حجم هپتان لازم کمتر است . به طوریکه به ازای هر 1 گرم از نمونه ml 30 هپتان لازم است .

پس از افزودن هپتان نمونه را به مدت 60 دقیقه می جوشانیم سپس سرد کرده و به مدت 150 ـ 90 دقیقه در یک فضای تاریک نگه می داریم . سپس مخلوط حاصله را فیلتر می کنیم . به جز آسفالتین بقیة اجزاء نمونه در هپتان حل می شوند و از فیلتر عبور می کنند .

و این بار آن را در مجاورت هپتان ( بخارات هپتان ) قرار می دهیم تا جدا سازی کاملتری صورت گیرد . وقتی حلال خروجی از یک بی رنگ شد مطمئن می شویم جداسازی کاملاً انجام گرفته است . سپس به جای هپتان این بار از تولوئین داغ استفاده می کنیم . تولوئین آسفالتینها را می شوید . در ظرفی آسفالتینها را می شوید . در ظرفی آسفالتینهای شسته شده با تولوئن را جمع می کنیم . این محلول را به قدری حرارت می دهیم تا تمام تولوئین تبخیر شده و تنها آسفالتین بماند .


تحقیق بررسی مفهوم جذب انرژی

تحقیق بررسی مفهوم جذب انرژی در 30 صفحه ورد قابل ویرایش
دسته بندی مواد و متالوژی
بازدید ها 5
فرمت فایل doc
حجم فایل 38 کیلو بایت
تعداد صفحات فایل 30
تحقیق بررسی مفهوم جذب انرژی

فروشنده فایل

کد کاربری 6017
کاربر

تحقیق بررسی مفهوم جذب انرژی در 30 صفحه ورد قابل ویرایش


تعریف جذب

مفهوم جذب [1]در آکوستیک اتلاف انرژی به هنگام برخورد موج صدا به یک سطح و سپس انعکاس آن است. کلمة «جذب» رااغلب اشخاص عادی برای بیان عمل یک اسفنج هنگامی که آب را به خود می کشد، به کار می گیرند، که این معنا شامل آکوستیک نمی شود. آب جذب شده توسط اسفنج دوباره در دسترس خواهد بود، اما نوفه «جذب» شده توسط آکوستیک تایل را نمی توان دوباره به دست آورد. زیرا به صورت حرارت تلف شده است. مفهوم جذب آکوستیکی در درجه نخست شامل فضاهای داخلی می شود. اگر دیواری وجود نداشته باشد، صدا فقط در اثر افزایش فاصله منبع کاهش می یابد.

اگر فرض کنیم که یک موج با انرژی تابشی معینی با زاویه ای تصادفی به سطحی برخورد کند، مقداری از انرژی تابشی به طرف محیطی که سرچشمه شعاع تابشی در آن قرار گرفته است، منعکس می شود و بقیه انرژی تابشی به داخل مادة سطح مزبور نفوذ و غالباً از میان آن عبور می کند. با استفاده از روش شعاعی ضریب جذب به صورت زیر تعریف می شود

انرژی باز تابشی-1






انرژی تابشی

بنابراین ضریب جذب نمایانگر نسبتی از انرژی صوتی تلف شده به انرژی سرچشمه صداست که مقدار آن از صفر تا یک متغیر است( یعنی از صفر تا صددرصد) بنابراین اگر ضریب جذب مساوی صفر باشد، به این معناست که انرژی تلف شده و تمام صدا در فضایی که سرچشمه در آن است باقی می ماند. این بدان معنی است که تمام دیوارهایاز نظر آکوستیکی «سخت» هستند و انرژی باتابیده شده با انرژی تابشی برابر است. همان طور که این ضریب به سمت 1.0 میل می کند، یعنی انرژی بیشتر و بیشتر تلف شده است و انرژی بازتابشی رفته رفته جزء کوچکتری از انرژی تابیده شده خوهد شد. از نظر آکوستیکی به چنین سطحی «نرم» گفته می شود.

به طریق مشابه ضریب عبوری را می توان به صورت زیر تعریف کرد:

انرژی عبور کرده - 1








انرژی تابشی

انرژی کلی از جمع ضریب جذب و ضریب عبوری به صورت زیر به دست می آید.



از اتلافی که به علت اصطحکاک به وجود می آید (تبدیل به حرارت) صرفنظر شده است. این اتلاف بر اثر اصطحکاک، بسیار اتلاف ناچیزی است، حتی در بالاتری مقدارش. بعداً خواهیم دید.

مقدار عددی ضریب جذب همان طور که قبلاً گفته شد، برای تمام موارد شناخته شده مقداری معین بین 1% (یک درصد) برای سطوح بسیار سخت مثل فولاد صیقلی یا بتن فشرده تا 99% برای مواد بسیار جاذب است. ضریب جذب یک پنجره باز 100 درصد در نظر گرفته می شود.

بعضی ازکارخانه ها مواد جاذب آکوستیکی با ضریب جذب بالاتر از یک (یعنی جذب بهتر از 100 درصد) را هم در فهرستهای خود گنجانیده اند که البته این کار، سود بردن از فقدان دانش پایه ای در مورد مفهوم جذب است.

در مورد تولیداتی که معمولاً با نام « یونیت جاذب » مشخص می شوند، ماده جاذب مثل جعبه کوچکی که روی دیوار نصب شده باشد، نسبت به سطح دیواره برآمده است. سطح بیرون آمده از دیوار تماماً با مواد جاذب پوشیده شده است، ولی جعبه به اندازة یک وجه خود از سطح دیورار را اشغال می کند. بنابراین، در این حالت در هر فوت مربع دیوار جذب بیشتری نسبت به حالتی که سطح دیوار به طور عادی پوشیده شده باشد، خوهیم داشت. بنابراین سازندگان ضریب جذب این تولیدات را بیشتر از صد درصد ذکر می کنند. حال اگر این یونیتها متصل به هم نصب شوند، به طوری که صدا ب وجه های کناری برخورد نداشته باشد، ادعاهای سازندگان تحقق نخواهد یافت. برای اینکه یونیتهای جاذب موثر باشند، باید با فاصله از یکدیگر قرار بگیرند. در غیر اینصورت جذب در هر فوت مربع سطح دیوار به کمتر از صد درصد نزول می کند.

ضریب جذب همچنین تابعی از فرکانس امواج صداست. طول موجهای کوتاهتر (فرکانسهای بالا) نسبت به طول موجهای بزرگتر ( فرکانسهای کمتر) خاصیت نفوذ بیشتری در دیوارها دارند و آسانتر به انرژی حرارتی تبدیل می شود. درفرکانسهای بالاتر نسبت به فرکانسهای پایین عموماً ضریب جذب بالاتری داریم.

یکی از خواص عمومی برای اینکه مواد جاذب موثر واقع شوند، داشتن سطح شفاف یا غیر حایل برای امواج صداست. همان طور که شیشه برای نور شفاف محسوب می شود، مواردی هم برای عبور صدا شفاف هستند. دیگر اینکه مواد جاذب صدا باید دارای مکانیز می باشند که امواج صوتی، هنگام عبور از آنها در اثر اصطحکاک به انرژی حرارتی تبدیل بشوند.

شفافیت برای صدا را می توان توسط سطوح پر منف، یا مواد سخت سوراخ سوراخ شده همراه با مواد متخلخل و یا به وسیلة پوشاندن مواد متخلخل با یک پرده خیلی سبک وزن، نازک، انحناپذیر و غیر قابل عبور برای هوا تأمین کرد. همة اینها اثر جذب کنندگی مشابهی دارند، اختلاف درنوع محیطی است که در آن مورد استفاده قرار می گیرند. همة انواع ذکر شده که مجموعه ای از جرمها هستند، به عنوان راکتانس آکوستیکی عمل می کنند و به هرحال همة آنها با افزایش فرکانس نسبت به حالت مطلوب طرح، شفافیت کمتری در مقابل صدا از خود نشان می دهند

مقاومت جریانی [2]

ساختمان داخلی مواد یعنی تاروپود و بافت داخلی و فضاهای خالی ما بین آنها عامل ایجاد اصطحکاک و در نتیجه مقاومت در برابر حرکت موجی است. پس از داخل شدن صدا به ماده، از دامنه آن کاسته می شود. این کاهش به دلیل وجود اصطحکاکی است که موج در کوشش خود برای حرکت از میان ماده با ان روبرو می شود. بنابراین، انرژی موج کاهش می یابد. کمیت اصطحکاک به وسیله مقاومت ماده در مقابل جریان هوا از میان آن توصیف و با نام مقاومت جریانی به صورت زیر بیان می شود.

افت فشار در دو طرف نمونه


= مقاومت جریانی

سرعت هوا در عبور از نمونه






آبسوربنت های پوسته ای (پانل)

چنانچه صفحات نازکی را که دارای مقاومت نشت بسیار بزرگی نیز می باشند (نظیر تخته سه لائی و نئوپان و فیبر) بوسیله یک داربست چوبی بر روی دیوار نصب نمایند.

ملاحظه می شود که این صفحات همانند آنچه که در ابتدای بخش مصالح آبسوربنت (شکل 51) مورد بررسی قرار گرفت میتوانند در فرکانسهای کم، ضریب آبسورپسیون نسبتاً زیادی بوجود آورند که فرکانس روزنانس fo (فرکانسی که در آن ضریب آبسورپسیون ماکزیمم می شود ) طبق رابطه تجربی.



تعیین می گردد که در آن M جرم صفحه برحسب کیلوگرم در هر متر مربع و d فاصله هوائی پشت صفحه (ضخامت چوبهای داربست) برحسب سانتیمتر می باشند.

مثلاً برای یک صفحه نئوپان بوزن 10 کیلوگرم در متر مربع ؟؟ بستگی به تقسیمات داربست دارد و با بکار بردن مواد پوروز در پشت پوسته ها می توان ضریب آبسورپسیون را تا 50% الی 70% رسانید.

بدین سان با وجود صرفه جوئی در مصرف مواد آبسوربنت، میتوان ضریب آبسورپسیون قابل ملاحظه ای که با مواد پوروز فقط با ضخامت خیلی زیاد میسر می گردید، بدست آورد.

از روند منحنی شکل 51 (D) دیده می شود که آبسوربنت های پوسته ای را فقط در صورتی که مواد آبسوربنت نوع دیگری نیز بکار برده شده باشد میتوان مورد استفاده قرار داد.

آبسوربنت های پوسته ای در منازل خود بخود وجود دارند – زیرا کلیه گنجه ها و کمدها و کلیه دیوارهای نازک (تیغه) و در و پنجره و غیره اثر جذب نغمه های بم را دارند.

در مکانهائی که لوازمی از این قبیل وجود ندارد (تونل – زیرزمین – حمام – بناهای بتونی و نظایر آن ) اثر نامطلوب واخنش طولانی نغمات با فرکانسهای بم را میتوان بخوبی احساس نمود.

در سال 1862 هلمهولتس دانشمند فیزیکدان آلمانی روابط مربوط به کاوکهای (محفظه) توخالی (رزوناتر) را بصورت قوانین فیزیکی رزوناترها وضع نمود که امروزه از آن در فیزیک و معماری استفاده فراوان می شود. بدیهی است که کاربرد رزوناتر برای جذب نغمه های بم می باشد و بعلت گرانی قیمت و اشکالات اجرائی فقط برای موارد خاص (از قبیل استودیوهای رادیو و تلویزیون ) قابل اجراء می باشد.

ساختن رزوناتر با مصالح عادی مشکل است و از این رو در عمل برای این منظور از آجرهای توخالی و همانند آن ها و یا از آکوستیک تایل و یا آبسوربنت های پوسته ای که با فاصله ای از یکدیگر نصب گردند استفاده می گردد.

- دستگاه مولد امواج ساکن

(Standing Wave Apparatus Type 4002)

اصول این دستگاه بر اساس لوله کنت استوار شده است. به کمک این دستگاه با استفاده از خاصیت امواج ساکن (تداخل امواج) می توان میزان ضریب جذب و امپدانس اکوستیکی یک ماده را سریع و آسان (البته با تقریب) بدست آورد.

دو نوع لوله به قطرهای 3 و 10 سانتیمتر با جعبه بلندگو قابلیت اتصال دارد. ؟؟ لوله به قطر 10 سانتیمتر اندازه گیری را در رنج فرکانسی 90 تا 1800 هرتز و لوله اندازه گیری را در رنج فرکانسی 800 تا 6500 هرتز ممکن می سازد.

دستگاه اندازه گیری فوق مجموعاً از عناصر زیر تشکیل یافته است:

1- میکروفن

2- واگن متحرک حامل میکروفن

3- بلندگو

نحوه انجام عمل اندازه گیری بدین صورت است که در وهله اول بوسیله یک نوسان ساز موجی به بلندگوی سیستم اعمال می شود. بلندگو بصورتی تعبیه شده که ارتعاشات حاصل از آن به سمت انتهای لوله یعنی محل نصب ماده جذب رفته و پس از برخورد با آن قسمتی از موج جذب ماده شده و قسمتی دیگر بازتاب می شود. میله باریکی ارتعاشات لوله را به میکروفنی که در روی ریل حرکت می کند منتقل می سازد که پس از دریافت ارتعاشات توسط میکروفن، اندازه گیری مقادیر حداکثر و حداقل میسر می شود.


تحقیق بررسی مبانی و اهمیت گرمادهی مادون قرمز

تحقیق بررسی مبانی و اهمیت گرمادهی مادون قرمز در 16 صفحه ورد قابل ویرایش
دسته بندی مواد و متالوژی
بازدید ها 3
فرمت فایل doc
حجم فایل 16 کیلو بایت
تعداد صفحات فایل 16
تحقیق بررسی مبانی و اهمیت گرمادهی مادون قرمز

فروشنده فایل

کد کاربری 6017
کاربر

تحقیق بررسی مبانی و اهمیت گرمادهی مادون قرمز در 16 صفحه ورد قابل ویرایش


مقدمه :

در دنیای فرآوری مواد ، حرارت ودما ، پارامترهای مهمی هستند چه مواد فولاد ، شیشه ، وسایل الکترونیکی ، مقوا ، غذای منجمد ، تایر و یا کاغذ باشند ، در مرحله ای از فرآیند تولید ، حرارت داده می شوند یا از آنها گرفته می شود .کنترل این فرآیند حرارت دهی و دمای ماده ، برروی کیفیت محصول ، مصرف انرژی ، محصول نهایی مخارج عملیات وبهره وری تأثیر می گذارند .

کنترل نکردن دما ، اغلب قربانی کردن یکی از عوامل فرآیند تولید را باعث می شود . متعاقباً ، کنترل کردن دما ، و این عوامل فرآیندی برای حداکثر کردن اجرای هر گونه عملیات فرآوری مواد لازم و حقیقی هستند . با در نظر گرفتن مصرف انرژی بدون کنترل دما ، این امر باعث بیش از حد گرم کردن مواد می شود . تا مطمئن شویم که خواص محصول بدست آمده است و بر پایة یک توازن گرمایی عادی که عوامل تجهیزاتی و فرآوری برروی کارآیی عملیات تأثیر می گذارند ، مبلغ قابل توجهی برای بیش از حد گرم کردن پرداخت می شود . همانطوری که ذکر شد 5% یا F° 100 افزایش نسبت به گرمای مورد نیاز باعث کاهش 17%در انرژی می شود در یک کارخانة فولاد یا شیشه ، این رقم معادل میلیونها دلار در سال در زمینة مخارج سوخت می شود در دماهای کمتر ، کاهش های گرمایی کمتر احساس می شوند ولی آنها نیز قابل اندازه گیری و چشمگیر هستند . مورد دیگر کارکردن بدون کنترل دما ، شامل فرآوری مواد در دماهای کمتر است تا مطمئن شویم که نتایج مناسبی بدست می آوریم .

در عمل ریخته گری آلومینیوم ، که در گذشته اندازه گیری دقیق دما امکان پذیر نبود ، فشارها در سرعتهای بسیارپایین انجام می گرفت تا خواص آلومینیوم حفظ شود و مقدار دور ریز مواد به حداقل برسد .در حال حاضر، با تکنولوژی مادون قرمز از حرارت غیر تماسی استفاده می شود تا کارایی بیشتر شده و دور ریز مواد زائد نیز حذف می وشد . این توانایی در اندازه گیری دقیق حرارت در هنگام عمل فشار و نیز عمل ریخته گری باعث مهندسی مجدد فرآیند شده و ریخته گری آلومینیوم را به یک سطح جدید اجرایی رسانده است که در آن از کنترل فرآیند و اوتاسیون استفاده می شود . منافعی که در هر فشار نصیب ریخته گران آلومینیوم می شود ، به میلیونها دلار می رد و این با افزایش 30 تا 50 درصدی ظرفیت پذیرش وحذف دورریز محصول امکان پذیر شده است از یک منظر سرمایه گذاری کلان این ظرفیت پذیرش اضافه شده ، همچنین باعث به تأخیر انداختن سرمایه گذاریهای کلان در شیوه های پرس جدید شده که تحت استانداردهای قدیمی امکان انجام 3 پرس را با ظرفیت 4 را داراست .

این تنها یک مثال از آن چیزی است که امروزه مردم برای کسب سود رقابتی بیشتر در بازارهای جهانی با استفاده از کنترل اندازه گیری حرارت مادون قرمز انجام می دهند . در نگاه اول ، برخی مردم ، ترمومتری را کاری بسیار پرهزینه و پیچیده می بینند که شامل نصب و نگهداری آن می شود گرچه این باوری غلط است و این حسگرها به آسانی قابل نصب و کاربرد می باشند . و نسبت به منافع سرمایه گذاری پرهزینه و گران نمی باشند . بطور میانگین باز پس دهی سرمایه بین 2 روز تا 2 ماه تخمین زده شده است. منافع ترمومترهای مادون قرمز در مقایسه با دیگر تکنولوژیهای اندازه گیری دما به شرح ذیل می باشند .:

دقت بهتر ، زیرا آنها دمای هدف را اندازه می گیرند ( در مقابل دمای خودش )
بکارگیری منعطف : زیرا قابلیهای غیر تماسی آن را می توان برای اندازه گیری اهداف متحرک و متناوب ، مواد در خلاء خو میدانهای الکتریکی و همچنین کاربردهایی شامل محیطهای دشوار با دمای زیاد وشرایط سخت (‌دود ، روغن و دیگر موانع )بکاربرد
واکنش به موقع : با حسگرهای سریع این عمل انجام می شود ( 10 تا 500ms)
برای درک پتانسیل صحیح امکانات حسگرهای مادون قرمز ، بهتر است این حسگرها را به عنوان راه حلی برای یک مسأله و نه تنها یک وسیله اندازه گیری دما در نظر بگیریم . بخشهای ذیل ، مبانی ترمومتری مادون قرمز و انواع مختلف حسگرها و کاربردهای آنها را توضیح می دهد . هدف ، تهیة یک پیش زمینه و اطلاعات لازم برای انتخاب صحیح و به کاربردن حسگرهایی است که با نیازهایی که ما در کار با آنها داریم بیشتر وفق داشته باشند.

فرآیند انتخاب (گزینش):

ترمومتری تک طول موج کل انرژی تابش شده زا شیء را در یک طول موج معین اندازه گیری می کند. این حس گرها به صورتهای قابل حمل، ترانسمیترهای 2 سیمی، سیستم های آن لاین و آلات کاوشگر وجود دارند. که معمولاً همراه با سیستمهای هدف گیری بصری، خط لیزر، غیر هدف گر، لنزهای فیبری، خنک کننده های آبی، لنزهای کانال هوا و سایر وسایلی است که محل نصب و کار با آن را ساده می سازد. سنسورهای آن لاین دارای خروجی خطی 4 تا 20MA هستند که برای هدایت کردن صفحه نمایش ها، کنترل کننده ها، ثبت کننده های داده ها و یا کامپیوترهای از راه دور بکار می روند. کاربردهایی که عملیاتهای تولید ساده را پوشش می دهند شامل شبکه های تحرک کاتر، پلاستیک، لاستیک، منسوجات و همچنین فرآیندهایی که اندازه گیری دمای محصول در مقابل دمای هوا یا گرم کن می تواند ظرفیت پذیرش را افزایش داده و کیفیت محصول را به طور پایدار افزایش می دهد. انتخاب واکنش طیفی مادون قرمز و محدوده دما از طریق کاربرد خاص مشخص می شود و بسیار واضح است. حسگرهای با طول موج کوتاه در نواحی 8/0 و 2/2 میکرون فیلتر شده اند برای کاربردهای با دمای زیاد و متوسط به کار می روند. مانند ریخته گریها، شیشه گریها و فولاد و فرآوری نیمه رسانه ها. طرحهای 43/3 و 94/7 میکرون برای اندازه گیری فیلمهای مختلف پلاستیک که دارای باند جذب در این طول موجها می باشند بکار م روند. با فیلتر کردن در این نواحی، ضریب گسل ساده شده و به حسگرهای تک طول موج امکان استفاده را می دهد. به همین صورت، اکثر مواد شیشه شکل در 6/4 میکرون کدر می شوند و فیلترینگ باند باریک در 1/5 میکرون امکان اندازه گیری دقیق سطح شیشه را می دهد. از سوی دیگر برای نگاه کردن از داخل یک شیشه، یک حسگر فیلتر شده در محدوده 1 تا 4 میکرون امکان دسترسی آسان به پورتهای نظارتی درون کانالهای فشار و خلاء را می دهد. فیلترینگ 1/5 نیز برای عملیاتهای خشک کردن و حرارت دهی استفاده می شوند که لامپهای مادون قرمز کوارتز منبع گرما می باشند. طرح 8/3 میکرون نسبت به گازهای احتراقی و شعله ها غیرحساس می باشد و برای اندازه گیری دماهای داخل کوره ها، کوره های ذوب و اتاقکهای سوخت که شعله در آنها وجود دارد بکار می روند. برای کاربردهای در دماهای کم مانند غذاهای منجمد، پیست های رنگی، تأثیرهای ماشینهای مسابقه ای و چاپ، طول موجهای بیشتر 814 میکرونی بنابر سطوح پایین انرژی تابشی موردنیاز می باشد.ترمومتری دوطول موجه برای کاربردهای سخت تر و پیچیده تر بکار می رود که در آنها دقت کامل مهم می باشد وگسیل شی کم و یا متغییر می باشد این حس گرها همچنین دارای توانایی منحصر به فردی برای کار دقیق در شرایط آلوده دارند مانند پنجره های کثیف و یا اشتباه کوچک مانند یک سیم که در میدان دید حسگر قرار نمی گیرد می باشند . بعنوان مثال ، در دمای زیاد فرآوری فولاد که اکسیداسیون پرشتاب و یا آلودگی دود و رطوبت بسیاری مابین شی و حسگر و همچنین دمای زیاد محیط وجود دارد باعث می شود که سطح دارای گسیل متغیر می شود ( انعکاسی متغیرات ) با استفاده از لنزهای فیبری ، حسگر در طول موج برای این کاربرد ، اثرات گسیل متغیر ، اتمسفر آلوده و دمای زیاد محیط کار را حذف می کند . ترمومتری چند طول موج شامل اندازه گیری انرژی طول موج متفا وت می باشد

(‌باندهای طیفی ) دمای شی را می تواند با استفاده مستقیم از دستگاه بطور دقیق و بدون استفاده از گسیل و زمانی که گسیل در هر دو طول موج یکسان باشد بدست آورد این مورد به نام وضعیت جسم خاکستری توضیح داده شده است .

تئوری این طرح کاملاً ساده وصریح است و با معادله های زیر توضیح داده شده است با استفاده از دو پاسخ طیفی در دو طول موج مجاور و با گرفتن نسبت این سیگنالها از معادلة پلانک ، سیگنال خارج قسمت به دماسنجی است و ضرایب گسیل از معادله حذف می شود .

که R= ضریب تابش طیفی ، Tv= دمای تابشی سطح گسیل طیفی

با داشتن منحنی توزیع یک قطعه جسم سیاه واندازه گیری ضرایب در مقادیر مختلف گسیل ، می توان همان موضوع را رسم کرد با استفاده از فیلترهای با پهنای باند کم در اندازه های 8/0 و 7/0 میکرون ، عامل ضریب بر مقدار 428/1 برای گسیلهای کمتر از 1/0 2ثابت می ماند

با یک حسگر دو طول موجه ، گسیل مقوله ای برای اشیاء خاکستری نمی باشد مشابهاً هر گونه تغییر دیگری که در طبیعت خاکستری باشند ؛ برروی دقت اندازه گیری شده توسط طرح دو طول موج تأثیری ندارد . این تغییرات شامل تغییراتی در اندازة‌شی ، از قبیل یک رشته سیم و یا جریانی از شیشه مذاب که قطر آن تغییر کرده و یا متحرک می باشد است .


تحقیق بررسی کارایی بازدارندگی انرژی هسته ای

تحقیق بررسی کارایی بازدارندگی انرژی هسته ای در 16 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 1
فرمت فایل doc
حجم فایل 13 کیلو بایت
تعداد صفحات فایل 16
تحقیق بررسی کارایی بازدارندگی انرژی هسته ای

فروشنده فایل

کد کاربری 6017
کاربر

تحقیق بررسی کارایی بازدارندگی انرژی هسته ای در 16 صفحه ورد قابل ویرایش


کارایی بازدارندگی هسته ای
رابرت جرویس

شاید برجسته ترین ویژگی جهان پس از جنگ همان باشد که - آن را می توان پس از جنگ نامید زیرا که قدرتهای بزرگ از سال 1945 با یکدیگر جنگ نکرده اند. چنین دوره طولانی از صلح در میان دولتهای قدرتمند بی سابقه است. چیزی که تقریباً غیر معمول است ، عبارت می باشد از احتیاطی که ابرقدرتها در مقابل یکدیگر بکار می بردند. اگر چه غالباً روابط ابرقدرت ها را به صورت بازی بزدل مطرح می کنیم ولی در حقیقت ایالات متحده و اتحاد شوروی هیچگاه همانند نوجوانان بی باک عمل نکرده اند. در حقیقت بحران های ابرقدرت ها همچون جنگ های گذشته به ندرت اتفاق می افتاد. اگر چه ممکن است کسی از بحران 1973 بگوید ولی در طول یک ربع قرن هیچ بحران جدی و شدید وجود نداشته است. به علاوه ،‌در همان بحران های ایجاد شده هم ، هر طرف به دنبال این بود تا امتیاز دهد که از نزدیک شدن به لبة جنگ جلوگیری شود. بنابراین چیزی که ما در بحران موشکی کوبا شاهد بودیم ، نوعی مصالحه بود تا پیروزی آمریکا ، کندی مایل نبود که از تمام مشوق ها دست بکشد و روس ها را به استفادة از زور مجبور سازد یا حتی باعث تدوام رویارویی شکننده گردد.

نسبت دادن این تأثیرات به وجود تسلیحات هسته ای معمولی و متعارف بوده است. به این دلیل که هیچ طرف نمی توانست با موفقیت در یک جنگ تمام عیار از خود حمایت کند، هیچ نوع پیروزی نمی توانست وجود داشته باشد یا همانطور که جان مولر بیان می دارد ،‌هیچ طرف نمی توانست از آن سود ببرد. البته این بدان معنی نیست که جنگ روی نخواهد داد. آغاز جنگی که انتظار پیروزی از آن نمی رود منطقی و عقلانی است ،‌اگر این اعتقاد وجود داشته باشد که نتایج احتمالی جنگ نکردن به مراتب بدتر از جنگ کردن باشد. جنگ همچنین می تواند از طریق اشتباه ، از دست دادن کنترل یا عدم عقلانیت روی دهد. اما اگر تصمیم گیرندگان منطقی باشند صلح محتمل ترین نتیجه خواهد بود. بعلاوه ،‌تسلیحات هسته ای می تواند توضیح دهندة احتیاط ابرقدرت ها باشد: زمانیکه هزینة دنبال کردن دستاوردها تخریب و نابودی کلی می باشد، تعادل و میانه روی منطقی می باشد.

برخی از تحلیلگران بحث کرده اند که این تأثیرات یا روی نداده است یا اینکه احتمالاً در آینده تداوم نخواهند داشت. پس فرد ایکل Fred Ikle در پرسیدن این سؤال تنها نیست که آیا بازدارندگی هسته ای می تواند تا آخر این قرن ادامه یابد یا نه .اغلب ادعا شده است که تهدید انتقام همه جانبه تنها به عنوان پاسخی برای حمله همه جانبة طرف دیگر باورپذیر است: از اینرو رابرت مک ناما را با تحلیل های محافظه کارتری که نظراتشان با نظر وی هیچ اشتراکی ندارند و بیان می دارند که تنها هدف نیروی استراتژیک خود برای استفادة نخست است ، موافقت می کند. بنابراین در بهترین حالت تسلیحات هسته ای ، صلح هسته ای را به بار خواهند آورد؛ آنها استفادة از سطوح پایین تر خشونت را جلوگیری نمی کنند – و حتی ممکن است این سطوح را نیز تسهیل کنند. از اینرو جای تعجب نیست که برخی ناظران ماجراجویی شوروی بویژه در آفریقا را به توانایی روسیه در استفاده از بن بست هسته ای به عنوان سپری می دانند که به دلیل آن می توانند کمک نظامی کرده و حتی نیروهای خود را در مناطقی که سابقاً کنترلی بر آن نداشتند مستقر سازند. به نظر می رسد که میانه روی ذکر شده تنها یک طرفه باشد. در حقیقت ، سیاست دفاعی آمریکا در دهة گذشته توسط نیاز به ایجاد انتخاب های هسته ای محدود برای بازداشتن هجوم شوروی جهت گیری شده بود، هجومی که ارزش های ما را تهدید و نابودی ایالات متحده را در پی داشت.

وجود ذخایر عظیم تسلیحات هسته ای از سه جنبه بر سیاست ابرقدرت ها تأثیر می گذارد. دو تا از این جنبه ها آشنا هستند: اول اینکه ویرانگری و تخریب یک جنگ همه جانبه به طور غیر قابل تصوری عظیم خواهد بود. دوم اینکه هیچکدام از طرفین- و در حقیقت طرف های سوم هم – از این تخریب و بلا در امان نخواهد بود. همانگونه که برنارد برودی ، توماس سیلنگ و بسیاری از اشخاص دیگر ذکر کرده اند ،‌چیزی که در مورد تسلیحات هسته ای مهم می باشد قتل عام نیست بلکه کشتن متقابل است. بدین معنی که هیچ کشوری نمی تواند در جنگ همه جانبة هسته ای پیروز باشد، در این مورد نه تنها اجتناب از جنگ بهتر از مبادرت به جنگ است بلکه همچنین بهتر است تا برای اجتناب از جنگ امتیازاتی نیز اعطاء گردد. باید ذکر کرد که اگر چه بسیاری از جنگ های گذشته نظیر جنگ جهانی دوم برای تمام متحدان به غیر از ایالات متحده (و شاید اتحاد جماهیر شوروی) اولین آزمایش را پشت سر نگذاشتند ولی دومین آزمایش را پشت سر خواهند گذاشت. به عنوان مثال ، اگر چه بریتانیا و فرانسه موقعیت خود را بوسیله جنگ بهبود نبخشیدند،‌ولی وضعیت آن ها بهتر از زمانی بود که اگر نازیها پیروز می شدند. بنابراین جنگ برای آنها معنا داشت حتی اگر همانطور که در آغاز جنگ
می ترسیدند،‌هیچ سودی از جنگ نصیبشان نمی شد. بعلاوه اگر متحدین در جنگ شکست خودرند، آلمانها – یا حداقل نازی ها - پیروزی کوچکی به دست آوردند، حتی اگر هزینة آن بسیار زیاد بوده باشد. اما همانطور که ریگان و گورباچف در بیانیه مشترک خود بعد از جلسه سران در نوامبر 1985 تأیید کردند ، در یک جنگ هسته ای پیروزی وجود نخواهد داشت و هرگز نباید به این جنگ مبادرت کرد. تأثیر سوم جنگ هسته ای بر سیاست ابرقدرت ها از این حقیقت نشأت می گیرد، تخریب و ویرانی می تواند بسیار سریع یعنی در طی چند روز یا حتی چند ساعت صورت گیرد . نه تنها می توان بحث کرد که بحرانی شدید یا استفاده محدود از زور – حتی نیروی هسته ای به طور اجتناب ناپذیری به ویرانی کلی منجر خواهد شد ، بلکه باید گفت که این احتمالی است که نمی توان آن را نادیده گرفت . به هر حال، حتی در دوران آرامش نیز یک طرف یا طرف دیگر می تواند به حمله ای همه جانبه و بدون دلیل مبادرت کند. محتمل تر اینکه یک بحران که می تواند به استفاده محدود از زور منجر شود، به نوبة خود هم می تواند جنگی تمام عیار و همه جانبه را بوجود آورد. حتی اگر هیچ طرفی خواهان این نتیجه نباشد احتمال زیادی از افزایش سریع و مرگبار جنگ وجود دارد.
مولر در زمانی که تسلیحات متعارف می توانند به لحاظ ویژگیهای تخریب ، برابری و سرعت جایگزین تسلیحات هسته ای شوند مبالغه می کند. به هر حال وحشت ناشی از جنگ های گذشته را نمی توان با تأکید بر سطح تخریبی تسلیحات کنونی نادیده گرفت . از اینرو همانند زمینه های دیگر نکته ای وجود دارد که تفاوت کمی به تفاوت کیفی تبدیل می گردد. شارل دو گل این امر را به طور فصیح بیان می دارد: بعد از یک جنگ هسته ای هر دو طرف نه قدرت دارند، نه قانون ،‌نه شهر ،‌نه فرهنگ ، نه گهواره و نه قبر . درست است که یک زمستان هسته ای و نابودی حیات بشری پس از جنگ هسته ای وجود نخواهد داشت، ولی تأثیرات جهانی آن بسیار بیشتر از جنگ های گذشته خواهد بود. مولر تفاوت های موجود در میزان تخریب بالقوه را زیاد مورد توجه قرار نمی دهد:‌«جنگ جهانی دوم سبب ویرانی کلی جهان نشد ولی سبب نابودی سه رژیم ملی شد. تفکر در مورد پریدن از طبقه 50 به جای طبقة 5 وحشتناک تر است ، ولی هر کسی که زندگی را تا حد بسیار کمی هم رضایت بخش بداند ، بعید است که دست به چنین عملی بزند.» جنگ این رژیم های ملی را نابود کرد ولی خود کشور یا حتی تمام ارزشهای مورد حمایت رژیم سابق را از بین نبرد. بسیاری از مردم در کشورهای محور از جنگ جهانی دوم نجات یافتند؛ و بسیاری نیز به سعادت و رفاه رسیدند. به طور کلی فرزندان آنها زندگی خوب دارند. شکاف بزرگی بین این نتیجه – حتی برای آنهایی که در جنگ شکست خوردند – و یک فاجعة هسته ای وجود دارد. اصلاً مشخص نیست که آیا جوامع می توانند پس از یک جنگ هسته ای بازسازی شوند یا اقتصادهای خود را مجدداً احیاء کنند. به علاوه ، نباید تأثیر تخریب فرهنگ ، هنر و میراث ملی را نادیده گرفت . حتی تصمیم گیرنده ای که امکان دارد حیات نیمی از جمعیت کشورش را به خطر بیاندازد، ممکن است به خاطر جلوگیری از نابودی گنج هایی که در طول تاریخ بدست آمده ، درنگ و تردید کند. بحث مولر که ذکر آن رفت به یک دلیل دیگر گمراه کننده است: کشورهایی که جنگ جهانی دوم را آغاز کردند نابود شدند ولی متحدان نه . این اینکه کشورهایی که ویران شدند به دنبال برهم زدن وضعیت موجود بودند، بیشتر اتفاقی بود تا از پیش تعیین شده ؛ چیزی که در این متن مهم است این می باشد که با تسلیحات متعارف حداقل یک طرف می تواند امید داشته باشد که از جنگ سود ببرد. مولر در بحث اینکه حتی زمانیکه تضاد منافع بین دو طرف زیاد باشد ، سطوح نسبتاً مطلق مجازات و تنبیه به ندرت برای بازدارندگی لازم هستند، کاملاً صحیح است. یعنی زمانیکه دولتها کاملاً اعتقاد دارند که دستاوردهای ناخالص از جنگ بسیار زیاد خواهد بود( در مقابل دستاوردهای خالص). روی هم رفته ایالات متحده می توانست ویتنام شمالی را شکست دهد. به همین صورت همانطور که مولر بیان می دارد ،‌ایالات متحده از تلاش برای آزادی اروپای شرقی حتی در عصر انحصار هسته ای آمریکا نیز بازداشته می شد.

ثبات کلی

اما آیا بازدارندگی بیشتری نیاز است ؟ آیا هر کدام از ابرقدرت ها برای تلاش در تغییر وضع موجود سوق داده شده اند؟ بر مبنای این نکته ها من با قسمت اعظم بحث مولر موافق می باشم – دستاوردهای احتمالی جنگ هم اکنون نسبتاً پایین است . بنابراین آنچه که او ثبات کلی می نامد را ایجاد می کند.

مجموعة تغییراتی که زیر عنوان مدرنیزه قرار می گیرند ،‌نه تنها هزینه های جنگ را افزایش داده اند، بلکه مسیرهای بدیلی را نیز برای اهداف ایجاد شده بوجود آورده است و مهم تر اینکه ارزش ها را در جهاتی که صلح را محتمل تر می سازد تغییر داده است. تمرکز ما بر بازدارندگی و موضوعاتی است که ارتش به نظری انحرافی از رفتار بین المللی سوق داده است. در حالتی برابر ، این امر به طور معکوسی بر رهنمودهای سیاسی تأثیر گذاشته است. ما توجهی کافی به انگیزه های دولت ها برای تغییر در وضع موجود یا نیاز برای استفاده از انگیزه ها و اطمینان ها و نیز تهدیدات و بازدارندگی نداشته ایم.

دولت هایی که قویاً برای به چالش کشاندن وضوع موجود تحریک شده اند، ممکن است سعی داشته باشند تا این امر را انجام دهند حتی اگر چشم اندازهای نظامی نیز ناخوشایند و شانس های تخریب نیز قابل توجه باشد . نه تنها محاسبة عقلانی می تواند چنین دولت هایی را به سمت به چالش کشاندن وضع موجود سوق دهد، بلکه مردمانی هم که اعتقاد دارند که یک موقعیت غیر قابل تحمل است ، فشار روانی بسیار زیادی را برای تغییر دادن احساس می کنند. بنابراین تسلیحات هسته ای خودشان – و حتی توانایی ضربة متقابل دوم – ممکن نیست برای ایجاد چنین صلحی کافی باشد. برخلاف بحث والتز، گسترش تسلیحات هسته ای در میان کشورهای ناراضی ضرورتاً موجب از بین نرفتن الگوی ثبات شوروی – آمریکا نخواهد شد.


تحقیق بررسی عایق های صوتی و حرارتی

تحقیق بررسی عایق های صوتی و حرارتی در 17 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 2
فرمت فایل doc
حجم فایل 11 کیلو بایت
تعداد صفحات فایل 17
تحقیق بررسی عایق های صوتی و حرارتی

فروشنده فایل

کد کاربری 6017
کاربر

تحقیق بررسی عایق های صوتی و حرارتی در 17 صفحه ورد قابل ویرایش



مقدمه
شرکت تارابگین

از آنجایی که نگرش صحیح به مباحث انرژی و بهره گیری مفید از آن امروز ذهن صنعتگران را به خود مشغول نموده به جرات می توان بیان کرد که عایق و به طور جامع صنایع تولید کننده عایق توانسته است تا حد بسیاری در نیل به این هدف روششن یاریگر مجموعه صنعت کشور باشند .

امروز یکی از مهمترین و بارزترین صنایعی چون پالایشگاهها ، نیروگاهها ، کارخانه های تولید سیمان ، پتروشیمیها ، صنایع خودرو سازی ، ساختمان و تاسیسات خانگی مبحث عایق بوده که با استفاده از آن می توان فرایند اتلاف انرژی را کنترل کرد .

شرکت تارابگین با هدف بازیافت سرباره حاصل از کوره بلند ذوب آهن اصفهان و همچنین تامین بخشی از نیازهای این مجموعه توسط شرکت معتر اتریشی VOEST- ALPINE در منطقه صنعتی ذوب آهن در قطعه زمینی با مساحت چهل هزار متر مربع احداث گردید که پس از نصب ماشین آلات و اموزش پرسنلدر کشور اتریش رسماً از سال 1357 به بهره برداری رسید .

این مجموعه از بدو سرمایه گذاری تا سال 1373 تحت پوشش شرکت ملی فولاد بوده که از ان سال در راستای سیاست خصوصی سازی دولت محترم به شرکت تکادو که خود از طلایه داران و پیشروان این جریان بوده واگذار گردید . از آن زمان تا به امروز توانسته ایم توجه کارخانجات و شرکت های داخلی و خارجی بسیاری را به خود جلب کنیم . نگرش کلی و اساسی ما بر تامین کمی و کیفی نیازمندیهای صنایع مختلف بوده که در این راه تخصص و فن آوری را خدمت گرفته ایم .

در حال حاضر با مجموعه ای در حدود یکصدو بیست نوع محصول متنوع با هفت خانواده همگن در خدمت چرخهای صنعت و توسعه میهن عزیزما ایران هستیم .
سخنی از مدیر شرکت تارابگین

شریاط اقتصادی در کشورمان ایجاب می نماید که افزایش کارائی کل شرکت افزایش قابلیت رقابت و تسخیر بازار به عنوان اهداف کلان در دستور کار مدیران قرار گیرد .

بنابراین شناخت بایدها و نبایدهای این دوران از اهمیت ویژه ای برخوردار بوده و دستیابی به یک بنگاه اقتصادی ایده آل کخ بتواند ضمن احترام و اعتقاد متقابل بین افراد کل شرکت ، خود رهبری و مشارکت فراگیر را توسعه بخشد ، همانا توجه داشتن به :

- مشتری و ارضاء نیاز و کسب رضایتمندی او

- تهیه و تدوین آیین نامه ها و احرای استانداردها در جهت ارتقاء کیفیت تولید

- بهسازی مستمر و تمرکز بر فرایندها به منظور خلق مزیتهای خاص

- بهینه کردن نقطه سربه سر با کاهش استراتژیک هزینه ها و تعیین قیمت تمام شده هدف

- تحویل به موقع و توجه به کار گروهی با استقرار نظام پیشنهادات .

- تقویت روحیه و احساس غرور بین همکاران با تشکیل هسته های تحول و تاثیر تصمیم سازیهای منتج از ان ، در تدوین استراتژی شرکت می باشد که به عنوان خط مشی در سر لوحه فعالیتهای شرکت تارابگین قرار داشته و دنبال می شود .
سرباره

به منظور تولید آهن ابتدا سنگ معدن آهن که شامل ترکیبات اکسید آهن ، منگنز، کلسیم و سیلیکاتها می باشد . پس از حمل به کارخانه ذوب اهن طی مراحلی به صورت آگلومره در می آید . پس از شارژ آگلومره در کوره بلند آهک به ان اضافه می شود . همچنین در این مرحله کک هم اضافه شده که نقش گرما زائی فرایند را دارد و عملیات اصلی که همان احیاء آهن می باشد را انجام ی دهد .

پس از طی این پروسه در کوره بلند ، آهن ذوب شده از قسمت پایین کوره خارج شده و از قسمت بالای آن ذوب سرباره خارج می گردد . این ذوب در پاتیلهای 20 تنی به کارگاه سرباره منتقل شده و در وانهای مخصوصی که تزریق جت آب دارد تبدیل به رسباره جامد می شود که این سرباره جامد به عنوان مواد اولیه به شرکت تارابگین حمل می گردد .

با توجه به نیازهای اساسی صنایع و مصرف کننده گان ، شرکت تارابگین عایقهای حرارتی و صوتی خود را از سرباره کوره بلند ذوب آهن می نماید .

مزیت ویژه و اصلی تولیدات این شرکت در مقایسه با دیگر عایقهای مشابه را می توان چنین عنوان نمود که با عنایت به جریان صنعتی تولید سرباره در ذوب آهن به عنوان ماده اصلی عایقهای تارابگین دارای آنالیز شیمیایی نسبتاً ثابتی بوده که خصوصیت ثبات در عناصر تشکیل دهنده باعث تولید محصولاتی با حداقل تغییرات شده است .





میلیمتر نیز قابل تولید است .
موارد مصرف

پانلهای پشم سرباره بدلیل داشتن استحکام مطلوب و قابلیتهای مختلف در صنعت و ساختمان کاربرد گسترده ای دارد . در ساختمان به عنوان عایق بین جدارها به منظور کاهش تلفات انرژی و در استودیوهای صدابرداری ، تونلهای مترو، دیوراسالنهای کنفرانس و فرودگاهها برای جذب صدا و جلوگیری از انتقال ارتعاشات مورد استفاده قرار می گیرند .

همچنین مجتمع های پتروشیمی ، پالایشگاهها ، نیروگاهها ، مراز صنعتی و ساختمان از عمده ترین مصرف کننده گان پانل ها هستند .



ایزوترم (عایق فله ای )

این نوع پشم فله مستقیماً از خط تولید گفته می شود و فاقد هر گونه عامل پیوندی است که در کیست های 25 تا 35 کیلوگرمی به صورت رول ، فله و حلاجی شده بسته بندی می شود . وزن مخصوص ایزوترم 80 تا 100 کیلوگرم بر متر مکعب است .

محدوده دمای کارکرد :

مقاومت موثر ایزوترم در برابر حرارت تا 800 درجه سانتیگراد است .
موارد مصرف

پشم خام فله را می توان برای عایقکاری بین دو جدار دیوارهای ساختمان ، بین دربهای چوبی ، جدار دودکشها ، منبع اگزوز اتومبیل و دستگاههای صنعتی و برای پر کردن فضاهای فاقد شکل هندسی منظم مصرف کرد .

پشم خام حلاجی شده جایگزین مناسب و بی ضرر برای آزبست در تولید لنت ترمز می باشد .
رزین

از دیگر محصولات شرکت تارابگین رزینهای پایه فنولیک می باشد که در یک کارگاه با امکانات لازم تولید می شود . در حال حاضر 3 راکتور تولید رزین ، سیستمهای انتقال مواد اولیه به داخل راکتورها با اتوماسیون کامل و دقت بالا جهت اندازه گیری مواد اولیه ، آزمایشگاه شیمی جهت اندازه گیری اندیسهای مورد نظر در مواد اولیه و محصولهای تولید شده از امکانات این کارگاه می باشد .
انواع رزین

1- رزین جهت مصرف در تولید عایقهای حرراتی و صوتی به منظور شکل پذیری الیاف اولیه تولیدی در تولید محصولاتی مانند ایزوپایپ فنوپانل ، فتوفلت استفاده می شود .

پس از تزریق این رزین به الیاف به جهت ایجاد اتصال بین الیاف ، این محصولات در دمای 250 درجه سانتیگراد تحت عملیات پخت قرار می گیرد و محصولات را با فشردگی های مختلف ایجاد می نماید .

2- رزول