دانلود مقاله-تحقیق-پروژه-کارآموزی

مرجع کامل خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

دانلود مقاله-تحقیق-پروژه-کارآموزی

مرجع کامل خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

طول کمان، مساحت و تابع Arcsine

طول کمان، مساحت و تابع Arcsine

طول کمان، مساحت و تابع Arcsine

دسته بندیریاضی
فرمت فایلdoc
حجم فایل70 کیلو بایت
تعداد صفحات15
برای دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل

طول کمان، مساحت و تابع Arcsine


-مجله ریاضیات ، مارس 1983، جلد 56، شماره 2 صفحات 110-106
-توصیف هندسی مقاله ها جبری یک محرک اصلی برای حساب دیفرانسیل وانتگرال مقدماتی ایجادمی کند.
عناوین حساب دیفرانسیل وانتگرال بوسیله هندسه تحلیلی در بسیاری از متن های مقدمه وابستگی به شروع های عکس دار در گسترش انتگرال معین و مشقق اشاره می کند.
در حالی که فاکتورهای هندسی ، بسیاری از نمادهای توابع مثلثاتی ومشتق های آنها را کنترل کننده یک راه حل تقریبا جامع برای روشهای جبری را معرفی و مطالعه توابع مثلثاتی معکوس وجود دارد این نتکه نشان می دهد چطور مفاهیم جبری در تعاریف انتگرال معین، مثلثاتی ومشتق های آنها در بحث تطابق توابع معکوس ممکن است ادامه پیدا کند. مرجع در رابطه با این مفاهیم جبری نسبت به توسعه نظریه بیضی و روش الوار(Eluer) در کشف قضیه های ضمیمه جبری را سینوسهای دایره ای هدلولی و lemniscare ایجاد خواهد شد.
حساب دیفرانسیل وانتگرال نمونه در مقابل arcsine بعنوان طول کمان با در نظر گرفتن ]1[ و ] 3[ بعنوان نمونه هایمان، یادآوری می کنیم که در کتاب جدید درسی استاندارد، بعد از آنکه انتگرال معین تعریف شده است . کاربردهایی شامل مساحت بین دو منحنی وفرمول طول کمان می شود از آنجائیکه تکنیک های انتگرال گیری کمی در دسترس می باشد. مشکلات طول کمان به کمان های باریک y=f(x) تا حدی که انتگرال بطور خاصی ساده باشد وگاهگاهی توجیه یک نویسنده برای نبود کاربردهای مناسب پیشنهادی شود.(ببنید ]3[ صفحه 429)
بعد از مقوله توابع مثلثاتی مروری از اندازه گیری رادیان بطوریکه طول کمان از نقطه (0و1) روی دایره واحد اندازه گیری می شود. Cosine sine یک عدد حقیقی بعنوان مختصات sineو cos یک عدد حقیقی بعنوان مختصات نقطه (x y) روی دایره واحد رادیان های از (0و1) (شکل 1 را ببنید) سپس خصوصیات sine و cos از تشابهات دایره و دیگر توابع مثلثاتی که در اصطلاح های cosin sine تعریف می شود ناشی می شود. مشتق های cosine sine بعنوان نتایج 1(sin )/ = ایجادمی شود. این حد از طریق برابر گرفتن طول کمان در امتداد لبه دایره واحد با مساحت بخشی که بوسیله کمان ( در شکل 2و 2= مساحت Aos) وسپس قراردادن این مساحت مابین دو ناحیه مثلث شکل برقرار می گردد.
بعد از مطالعه حساب دیفرانسیل وانتگرال توابع مثلثاتی (f(x)) مطابق توابع معکوس ( از طریق معکوس گرافهای که می شود

مقاله تصفیه فاضلاب

مقاله تصفیه فاضلاب

مقاله تصفیه فاضلاب

دسته بندیمحیط زیست
فرمت فایلdoc
حجم فایل59 کیلو بایت
تعداد صفحات62
برای دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل

آبی که اهمیت وجود آن شاید بر هیچیک پوشیده نباشد، متاسفانه از طریق تخلیة فاضلابها، پسابها و کلیه زواید حاصل از فعالیتهای انسان به شدت در معرض آلودگی قرار گرفته . پیشرفتهای صنعتی باعث شده که پسابهای غلیظ‌تر و با ترکیبات متنوع‌تر در جریان‌های آب تخلیه شدند.(2)

در حال حاضر بسیاری از منابع آبی دنیا گرفتار مشکلات ناشی از تخلیه فاضلابهای مختلف می‌باشند که بهسازی آنها و بازگشت به حالت طبیعی هزینه‌های هنگفتی را می طلبد. (1)

به منظور تصفیه فاضلاب در اجتماعات کوچک، استفاده از سیستم‌های گیاهی آبزی نظیر لاگونهای پوشیده شده با DW (گیاهان آبزی شناور) به دلیل راهبری آسان، همیشه پائین و اثر بخشی بالا مورد توجه قرار گرفته است.(4)

امروزه تمایل برای استفاده از گیاهان آبزی شناور بخاطر فواید گوناگونشان نظیر میزان رشد بالا، عمل حذف نوترینت در سطوح بالا، غنی بودن این گیاهان از پروتئین که باعث با ارزش شدن آنها به عنوان خوراک دام می گردد، بهره برداری و برداشت آسان آنها و تحمل بالای گیاه و قدرت سرکوب کنندگی جلبکی گیاه، تثبیت بالای نیتروژن (4) ، منبع غذایی برای انسان، کنترل حشرات آبزی ناقل بیماریهای خطرناک (به دلیل ایجاد پوشش متراکم در سطح آب که مانع خروج این حشرات می‌گردد). در داروسازی جهت ساخت داروهای آنتی بیوتیک، افزایش مواد آلی خاک و بهبود ساختمان و ترکیب شیمیایی خاک و . . . . (3) و همچنین استفاده از آنها به عنوان گیاه آلایش زا و مورد توجه قرار گرفته است. (4)

ولی تاکنون مطالعاتی در زمینه اینکه مواد آلی گلوکز و لاکتوز تا چه میزان می توانند در رشد آزولا و عدسک آبی مؤثر واقع شوند یافت نشده است.

لذا در این تحقیق از دو گونه گیاهان آبزی شناور (لمنامینور و آزولا) به منظور حذف مواد آلی محلول در محیطهای کشت حاوی گلوگز و لاکتوز استفاده شده است.

فهرست مطالب

فصل اول: کلیات

1-1- مواد آلی

1-1-1- اندازه‌گیری مواد آلی

1-2- گیاهان

1-2-1- گیاهان غوطه ور

1-2-2- گیاهان شناور

1-2-3- گیاهان حاشیه‌ای

1-3- گیاهان شناور

1-4- گیاه آزولا (مقدمه

1-4-1- جغرافیای گیاهی

1-4-2- پراکنش بوی آزولا در روی کره زمین

1-4-3- پراکنش آزولا توسط انسان

1-4-4- تاریخچه حضور آزولا در ایران

1-4-5- آرایه شناسی

1-4-6- زیست شناسی آزولا

1-4-7- تولید مثل آزولا

1-4-8- فیزیولوژی آزولا

1-4-9- معمای رشد در ایران

1-4-10- برآورد میزان این گیاه در ایران – سطح- وزن

1-4-11- منافع گسترش و هدایت آزولا

1-4-12- مضرات گسترش بی‌رویه

1-5- خانواده هناسه

1-5-1- عدسک آبی

1-5-2- گسترش جغرافیایی

1-5-3- پراکندگی در ایران

1-5-4- اهمیت اقتصادی

فصل دوم: مواد، وسایل و روشها

2-1- تهیه استوک ppm 100، ppm 100 و ppm 50 گلوکز

2-2- تهیه استوک ppm 100، ppm 100 و ppm 50 لاکتوز

2-3- تهیه نوترینت (C B A

2-4- روش تهیه مواد و محلولهای شیمیایی آزمایش COD

2-5- روش استاندارد کردن FAS

2-6- آزمایشات مرحله اول (بشر)

2-7- آزمایشات مرحله دوم (پتری دیش)

2-8- آزمایشات مرحله سوم (بصری)

فصل سوم: بحث و نتایج

3-1- یافته‌ها

جداول و منحنی ها

فصل چهارم: نتیجه‌گیری و پیشنهادات

4-1- نتیجه‌گیری

4-2- پیشنهادات

منابع

شبکه های احتمالی، روش مسیر بحرانی و نمودار گانت

شبکه های احتمالی، روش مسیر بحرانی و نمودار گانت

شبکه های احتمالی، روش مسیر بحرانی و نمودار گانت

دسته بندیریاضی
فرمت فایلdoc
حجم فایل31 کیلو بایت
تعداد صفحات21
برای دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل

شبکه های احتمالی، روش مسیر بحرانی و نمودار گانت


نمودار گانت
قبل ار تلاش جهت استفاده از این ابزار (Pert، CPM و Gantt) اطاعات پروژه باید از طریق معینی جمع آوری شده باشند. لذا لازم است یک توضیح پایه ای و اساسی در مورد قدم های ارتباطی ابتدایی کار داده شود.
فرایند طراحی یک پروژه شامل مراحل زیر است:
1-مشخص کردن تاریخ روش و شیوه های اجرای پروژه و طول عمر استفاده از پروژه.
2-مشخص کردن حوزه و میزان وسعت پروژه در دوره و مرحلة انتخاب شدة روش اجرای پروژه و طول عمر پروژه
3-مشخص کردن با انتخاب روش هایی که جهت مرور پروژه مورد استفاده قرار می گیرند.
4-مشخص کردن و از پیش تعیین کردن نقاط عطف یا تاریخ های بحرانی پروژه که باید به آنها پرداخت و رسیدگی کرد.
5-لیست کردن فعالیتها، با دورة پروژه، در رابطه با اینکه هرکدام از آنها باید سر موقع به پایان رسند.
6-برآورده کردن تعداد پرسنل لازم برای به پایان رساندن هر فعالیت
7-برآورد کردن پرسنل آماده به کار جهت به پایان رسانیدن هر فعالیت
8-مشخص کردن سطح مهارت مورد نیاز جهت تشکیل دادن هر فعالیت.
9-مشخص کردن وابستگی ها و پیش نیازی های هر پروژه.
-کدام فعالیت ها می توانند بطور موازی و هم زمان انجام شوند؟
-شروع کدام فعالیتها مستلزم تکمیل فعالیتهای دیگر است:
10-نقاط کنترلی و نقاط بازدید و مورد مرور پروژه
11-تشکیل دادن برآورد هزینة اجرای پروژه و تحلیل هزینه – منافع.
توسعة طرح یک پروژه مستلزم داشتن دقت بالا و درک جزئیات همة فعالیتهایی است که شامل می شودو مقدار زمانی که برای مدت زمان طول انجام هر فعالیت تخمین زده است، وابستگی های میان این فعالیتها، و توالی زمانی که این فعالیتها باید به اجرا درایند به علاوه، آماده بودن منابع باید مشخص گردد تا هر فعالیت با مجموعه فعالیتها جهت اختصاص به کار گرفته شود.
یک روش مورد استفاده برای توسعه لیست فعالیتها، خلق کردن چیزی است که به تجزیة ساختار کار معروف است.

یک تعریف:
تفکیک ساختار (WBS): یک انحلال و متلاشی کردن سلسله مراتب و یا تجزیة یک پروژه یا فعالیت اصلی به مراحل متوالی است که در آن هر مرحله یک تجزیه کاملتر از قبلی است. در شکل نهایی یک WSB در ساختار و چیدمان بسیار شبیه طرح اصلی است. هر مورد در یک مرحلة خاص از WBS متوالیاً شماره گذاری شده است (برای مثال: 10 و 10 و 30 و 40 و 50) هر مورد در مرحلة بعدی در طی شمارة منشاء اصلی خود شماره گذاری شده است. (برای مثال 1/10 و 2/10 و 3/10 و 4/10) WBS ممکن است در شکل یک دیاگرام کشیده شود. (چنانچه ابزارهای خودکار آماده باشند.) یا در یک نمودار شبیه کشیدن یک طرح.
WBS با دو فعالیت رو یهم رفته شروع می شود که نمایندة کلیت کارهایی هستند که پروژه را تشکیل می دهند. این نام طرح پروژه WBS می شود. استفاده از روش کار یا طول عمر مسیستم (تحلیل، طراحی و اسباب تکمیل) بعنوان یک راهنما قدم می گذارد پروژه به قدم های اصلی اش تقسیم شده است. اولین مرحلة پروژه وارد کردن اطلاعات است. مرحلة دوم اصلی تحلیلی است که پیرو طراحی، ترسیم، تست کردن، تکمیل و پیگیری دقیق انجام وظایف است. هرکدام از این مراحل باید به مرحلة بعدی جزئیاتش شکسته شوند و هرکدام از آنها، بازهم به مراحل کاملتر جزئیات، تا به یک فعالیت قابل مدیریت برسد. اولین WBS برای طول عمر پروژه به این صورت خواهد بود.

تحقیق ریاضیات بابلی و مصری

تحقیق ریاضیات بابلی و مصری

تحقیق ریاضیات بابلی و مصری

دسته بندیریاضی
فرمت فایلdoc
حجم فایل123 کیلو بایت
تعداد صفحات14
برای دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل

ریاضیات بابلی و مصری


شرق باستان
ریاضیات اولیه برای توسعه خود نیازمند یک پایه عملی که چنین پایه ای با پیدا شدن اشکال پیشرفته تر بوجود آمد. در امتداد برخی از رودخانه های بزرگ آسیا و آفریقا مانند نیل در آفریقا و دجله و فرات و یانگ سه و گنگ در نواحی مختلف آسیا اشکال جدیدی بوجود آمد.
در امتداد برخی از رودخانه های بزرگ افریقا و آسیا یعنی نیل در افریقا دجله و فرات در آسیای غربی سند و پس از آان گنگ در آسیای جنوبی میانه و هوانگ هو و پس از آن یانگ تسه در آسیای شرقی بود که اشکال جدید که زمینهای واقع در امتداد این رودخانه ها به نواحی کشاورزی ثروتمندی تبدیل شوند.
با خشک کردن باتلاق و کنترل سیلاب و آبیاری این امکان وجود داشت که زمین هایی که در امتداد اینها قرار گرفته ا ند تبدیل به یک کشاورزی ثروتمند شوند.
ریاضیات اولیه در نواحی معینی از شرق باستان برای خدمت به کشاورزی و مهندسی بوجود آمده باشد یک تقویم قابل استفاده ایجاد دستگاههای اوزان و مقادیر برای استفاده در برداشت محصول ، انبارکردن و تقسیم غذا و غیره ... در تعیین قدمت اکتشافی دو مشکل وجود داشت:
1) در ماهیت ایستاپی ساخت اچتماعی و انزوای طولانی برخی از نواحی و 2) خبر موادی که کشفیات بر روی آنها ثبت می شد.
در قدیم بابلیان کشفیات خود را به روی سفالهای بادوام ثبت می کردند و مصریها بر روی سنگ و پاپیروس که از همه بادوام تر بود. در این میان هندی ها و چینی ها یافته های خود را روی خاشاک و برگ درختان ثبت می کردند که ازدوام بسیار پائینی برخوردار بود حال به مطالعه مطالب کشف شده در بابل و مصر می پردازیم.
بابل:
منابع
باستان شناسانی که در بین النهرین کار می کند از قبل از اواسط قرن نوزدمم تا کنون حدود نیم میلیون لوح سفالی منقوش از زیر خاک در آورده اند. بیشتر از 50 هزار لوح تنها در شهر باستانی نیپور به دست آمده.
مجموعه های کثیری از این لوح ها در موزه های پاریس ، برلین و لندن و نیز در دانشگاههای ییل کلمبیا و پلسیلوانیا موجودند. اندازه این لوحها متفاوت است و بین آنها لوحهایی به شکل مربع به مساحت چند اینچ و نیز لوحهایی به اندازه یک کتاب معمولی به چشم می خورد.
گاهی نوشته روی این لوح ها تنها در یک طرف لوح و یا در هر دو طرف آن است. از این نیم میلیون لوح 300 تای آنها صرفاً ریاضی شناسایی شده اند که شامل جداول و سیاهه های از مسائل ریاضی هستند ما دانش خود را از ریاضیات بابلی مدیون همین لوحها هستیم. تا پیش از سال 1800 قبل از میلاد کوشی برای کشف رمز خط میخی نمی شد در این سال عده ای مسافر اروپایی متوجه کتیبه های منقش در عمل 300 پایی در منطقه بیستون در شمال غربی لیوان کنونی کشف کردند.
معمای کتیبه های سرانجام توسط سرهنری کرسویک رالینسون (1895 – 1810) دیپلمات آشورشناس کشف شد که او کلیدی را که باستان شناس و زبان شناس آلمانی به نام جرج گئورگ فرید ریش ( 1853 – 1775) پیشنهاد کرده بود تکمیل کرد.
با بوجود آمدن توانایی لازم برای خواندن متون میخی لوحهای بابلی بدست آمده معلوم شد که این لوحها ظاهراً به کلیه مراحل و علایق زندگی آن اعصار مربوط است برخی از متون ریاضی موجود مربوط به دوره نهایی سومری در سال 21000 ق م است.
دومین گروه که گروه بزرگی هم است مربوط به سلسله بابلی اول ( یعنی دوره شاه حمورایی) تا حدود سال 1600 ق.م. می باشد .
سومین گروه مربوط به سالهای 6000 ق.م تا 300 ب.م می رسد. که مربوط به دورهای امپراتوری بابلی جدید ( بخت النصر) و دوره های بعدی پارسی و سکوی می باشد چون که تغییر این لوح هنوز در دست اقدام است پس بعید نیست به نتایج چشمگیرتری در آینده برسیم.
ریاضیات بازرگانی و ارضی :
حتی قدیمیترین لوحها نشانی از مهارت در محاسبه در سطح عالی داشته و وجود دستگاه موضعی شصتگانی را طی مدت زمانی طولانی آشکار می کند. متون متعددی از این دوره اولیه به واگذاری و محاسباتیکه بر پایه این معاملات می پردازد در دست است.
این لوحها نشان می دهند که سومریهای باستان با کلیه انواع قراردادها رسید ، سفته ضمانت و رهن مقابله سروکار داشته اند و نیز اسناد شرکتهای بازرگانی و لوحهایی که با دستگاه های اوزان و مقادیر سروکار دارند بدست آمده اند.
در این 300 لوح ریاضی که بدست آمده حدود 200 تای آنها جداول هستند. این لوحهای جدولی شامل جدولهای ضرب، عکسها، مربعات و مکعبات و حتی جدولهای توان نیز هستند. به نظر می رسد که تقویم در بابل به اعصار قدیمیترین مربوط می شود.
هندسه:
هندسه بابلی با پیوند نزدیکی با مسامی عملی دارد. بابلی های 2000 تا 1600 ق.م با قواعد کلی:
1) محاسبه مساحت مستطیل
2) مساحت مثلثهای قائم الزاویه و متساوی الساقین
3) ذوزنقه قائم الزاویه
4) حجم مکعب مستطیل و کلی تر از آن
5) حجم منشور قائمی که قاعده آن ذوزنقه خاصی است آشنا بوده اند آنها محیط دایره را به صورت سه برابر قطر و مساحت را یک دوازدهم در مجذور محیط بدست می آورده اند که با فرض ns3 درست است.
6) آنها حجم استوانه مستدیر قائم را پیدا کردن حاصلضرب قاعده در ارتفاع بدست می آورند.
7) اما حجم مخروط ناقص یا هر ناقص مربع القاعده را به غلط به صورت حاصلضرب ارتفاع در سقف مجموعه قاعده ها محاسبه می کردند. و اینکه می دانند که اضلاع متناظر در دو مثلث قائم الزاویه متشابه متناسبند و اینکه عمود مثلث متساوی الساقین قاعده را نصف می کند و همچنین محاط در یک نیم دایره قائمه است. قضیه فیثاغورث را هم بلد بودند و به جای در مسائل فرض می کردند.
مسائل متعددی راجع به خط قاطع موازی با یک ضلع مثلث قائم الزاویه وجود دارد که منجر به حل معادلات درجه دوم می شوند.
و نیز بعضی از مسائل منتهی به دستگاه معادلات می شود در یک لوح یک مورد دستگاه ده معادله ده مجهول به چشم می خورد. در یک لوح دیگر که مربوط به سال 1600 ق.م است و در دانشگاه بیل نگهداری می شود که معادله درجه سوم کلی در بحث هرمهای ناقص وجود دارد که نتیجه حذف Z از دستگاه معادلات از نوع زیر است.

تقسیم بر محیط دایره به 360 جز مساوی را بدون تولید به بابلیهای عهد باستان مدیونیم X در دوره های آغازین سومری واحد بزرگی برای اندازه گیری فاصله که توی میل بابلی وجود داشت که تقریباً معادل 7 مایل امروزی است.
و چون میل بابلی برای اندازه گیری فاصله های طولانی بود به صورت واحد زمان یعنی زمانی برای پیمودن یک میل بابلی لازم است در می آمده که بعدها برای اندازه گیری فواصل زمان مورد پذیرش قرار گرفت.

مقایسه اصالت ریاضیات فیثاغوریان و اصالت ریاضیات در علوم جدید

مقایسه اصالت ریاضیات فیثاغوریان و اصالت ریاضیات در علوم جدید

مقایسه اصالت ریاضیات فیثاغوریان و اصالت ریاضیات در علوم جدید

دسته بندیریاضی
فرمت فایلdoc
حجم فایل9 کیلو بایت
تعداد صفحات10
برای دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل

مقایسه اصالت ریاضیات فیثاغوریان و اصالت ریاضیات در علوم جدید


افلاطون در رساله تیمائوس به نوصیف جهان طبیعی و فیزیکی می پردازد . در توصیفات افلاطون ، آنچه چشمگیر است (وساید متاثر از فیثاغوریان ) میل به ریاضیاتی کردن همه چیز است ، به علاوه ارسطو می گوید : افلاطون قائل به این بود که :
- صور ، اعدادند
- اشیاء به سبب بهرمندی از اعدادموجودند
- اعدادمرکبند از واحد و « بزرگ و کوچک » و یا « دوی نامعین » ( به جای محدود و نامحدود فیثاغوری )
- ریاضیات وضع واسطه ای میان « صور » و اشیاء دارند .
همچنین او قائل بود که حرکات پیچ پیچ اجرام آسمانی با قانون ریاضی مطابق است و نظم در اجسام طبیعی ، قابل بیان به نحو ریاضی اند . هر چند گرایش تان و تمام به ریاضی کردن همه چیز را امری ناموفق ، از سوی افلاطون دانسته اند . لکن آنچه در این کوشش برای ما ، مهم است ، این است که آیا وی با عقلانی کردن واقعیت و بخصوص طبیعت محسوس ، از طریق ریاضیاتی کردن آن ، به سوی نوعی ماشین گرایی قدم برنمیدارد ؟ عجیب می نماید که کسی که در باره عروج به زیبایی مطلقش تحت الهام از ارس در رساله میهمانی سخن می گوید ، چنین راوو را قائل شود . آیا باید بر آن شد که در تمام رساله های دیگر ، سقراط حقیقتاً به عنوان سقراط سخن نگفته است و اکنون در تیمائوس ، افلاطون ، آرای خود را بیان داشته است ؟
آیا انتساب صور به اعداد آنها را از جایگاه رفیعشان به سوی یک دستگاه ماشینی تنزل نمی دهند ؟
هر چند به نظر می رسد از سویی با ریاضیاتی شدن جهان طبیعی و جهان مثل و تبدیل آن به جهان قوانین معقول ، افلاطون به سوی ماشینی کردن جهان قوانین معقول ، افلاطون به سوی ماشینی کردن جهان پیش می رود و از سوی دیگر و در مقابل این رای گفته شده است که از قضا زیاضیاتی کردن طبیعت ، اعتلای آن است با عروج به زیبایی مطلق سازگار نیست ،از فیثاغوریان و گرایش همزمان آنان به ریاضیاتی کردن همه چیز ودر عین حال عرفان مداری آنان سخن به میان آمده است.
از سوی دیگر می دانیم که اشکال اعداد و اسرار مربوط بدانها نزد حکما و عرفای اسلامی جایگاه ویژه داشته است و محاسبات ، مربوط به جداول خاص علوم غریبه نیز مثال دیگر از این امر می تواند باشد.
آیا در این گونه عقاید و آرا نیز می توان سوال پیشین را پرسید؟ آیا اینکه اعداد ، «اصل اشیا» و موجودات ، پنداشته شوند ، می تواند ترس از ماشین شدن طبیعت را در دیدگاه قائلان به قول مذکور برای ما ایجاد نماید؟
پاسخ چنین اصالت ریاضاتی با اصالت ریاضیات علوم جدید (و به عنوان مثال بسیار ناب آن ، اصالت ریاضیات دکارت) چیست؟
دکارت نیز قائل به اصالت ریاضی بود و می خواست که عالن و آدم را با روابط ریاضی بسنجد و توصیف کند. او در پی تحقق یک «ریاضیات عمومی» بود که شاید بشود تمام معرفت رابا آن توصیف کرد. اوج هنر دکارت در تلاش برای تبیین ریاضیاتی از جهان را باید در هنرسه تحلیلی او جست و جو کرد. هندسه تحلیلی ، ابزاری است که ما توانایی می یابیم تا برای جهان جسمانی پیرامون خود ، معادله بنویسیم. دکارت مانند فیثاغورث ، هندسه را واسطه ارتباط جهان با اعداد ، قرار می دهد. او در دستگاه مختصات هندسی اش ، اعداد را با نقطه هایی متساویالفاصله روی محورهای ممتد ، متناظر می کند و جهان را درون این دستگاه قرار می دهد و لاز طریق تناظری مه برقرار می کند برای هر نقطه عالم جسمانی ، یک زوج ترتیبی از اعداد را در نظر می گیرد.
به این ترتیب ، مختصات یکه ای برای هر نقطه پیدا می شود. وقتی این اختراع دکارت را در کنار رای فلسفی اش قرار می دهیم ، در بیابیم که در نظر وی از آنجا که جسم بودن ، همان ممتد بودن است ، تمام جهان جسمانی ، قابل تحلیل به وسیله معادلات عددی خواهد بود. ثنویت دکارتی موجب آن می شود که وی در استفاده از این روش تحلیل جهان مادی کاملاً فارغالبال باشد و حتی در استفاده از آن در توصیف بدن انسان و حرکات اجزای آن نیز تردید به خود راه ندهد.
چنانکه قصد کرده بود ، حرکت قلب را با مبالات گرمایی در آن توضیح دهد.
در اینجا با تصویری از ماشینی کردن تام جهان روبروییم و یقیناً این از توصیف ریاضیاتی جهان به وسیله دکارت ناشی شده است. همین روند و ادامه تلاشهااست (کما اینکه قبل از دکارت در گالیلله و کپرنیک و ... این روحیه حکم است) که منجر به فیزیک نیوتونی و اکنون فیزیک جدید شده است. اما تفاوت در کجاست؟ چرا ب نظر می رسد ، نزد فیثاغوریان ، ریاضیات نوعی آمیزش با عرفان دارد و طبیعت را بالا می برد و نزد دکارت گرایش به ریاضیات نوعی آمیزش با عرفان دارد و طبیعت را بالا می برد و نزد دکارت نگارش به ریاضیات جهان را ناسوتی می کند؟ و چرا در افلاطون در هر دو وجه دیده می شود