تحقیق تاریخچه ریاضیات در چین
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات | 9 |
تاریخچه ریاضیات در چین
خلاصه ایی از تاریخ ریاضیات در چین
منابع اولیه عبارتند از: «گسترش ریاضیات در چین و ژاپن» اثر Mikami و ریاضیات چینی اثر Li yan و Dushiran تاریخچه زیر را مشاهده نمائید:
1- نماسازی عددی، محاسبه ریاضی، مقیاسهای شمارش
نماد سازی اعشاری سنتی- یک نماد برای هر یک از 10.9.8.7.6.5.4.3.2.1،100 و 1000 و 10000 و..
بنابراین 2034 نوشته میشود با نمادهایی به شکل 2 و 1000و3و10 و4 یعنی دوبار 1000 و 3 بار 10 باضافة 4. که باز میگردد به روش نوشتاری چینی.
• محاسبه با استفاده از تکه های کوچک خیزران بعنوان مقیاسهای شمارش شکل گرفت. شکل قرار گرفتن مقیاسهای شمارش نمایانگر یک روش اعشاری ساده بوده و برای نوشتن عبارات طولانی، عدد صفر نمایانگر یک فاصله بود. ترتیب نوشتن از چپ به راست شبیه روش شمارش عربی در 400 سال قبل از میلاد و یا زودتر بوده.
• جمع: نمادهای شمارش برای دو عدد در پائین قرار می گرفتند و یک عدد بالای دیگری اعداد از چپ به راست با هم جمع می شدند و در صورت نیاز انتقال انجام میشد. منها نیز به همین روش.
• ضرب: جدول ضرب 90*9 ضربهای اعداد بزرگ مانند روش ما با نتیجهگیری بر مبنای مقیاسهای فیزیکی انجام میشد. تقسیمهای اعداد بزرگ مانند روشهای رایج ولی نزدیکتر به روش galley بود.
2- Zhoubi suanjing (بهترین روش محاسبة شاخصها و منحنی های صعودی) (صد سال قبل از میلاد مسیح)
• یکی از تئوریهای منحنی های صعودی راتوصیف میکند قبل از آن Han dynasty (206 سال قبل از میلاد مسیح) ریاضی زودتر در کتاب سوزی 213 قبل از میلاد مسیح.
• بیان و کاربرد هندسه فیثاغورثی برای مساحی، ستاره شناسی و غیره. گسترش هندسه فیثاغورثی
• محاسباتی شامل اعداد کسری معمولی
3- نه فصل در مورد هنر ریاضی اثر jiuzhang suanshu (صد سال قبل از میلاد مسیح) گرد آوری ریاضیات بر پایه Han dynasty 249 مسئله در 9 فصل.
کاملترین مرجع مساحی و موثرترین کتاب ریاضیات هینی. گزارشات و تفسیرهای فراوان.
فصل 1: محاسبه مساحت: مباحث سیستماتیک در مورد الگوریتمهای مورد استفاده در شاخصهای شمارش اعداد کسری شامل alg برای LCM GCD مساحت اشکال سطح شامل مربع، مستطیل. مثلث، ذوذنقه،دایره و قطاع دایره و قطاع کره دوایر متحد المرکز، بعضاً تخمینی و بعضاَ دقیق.
بخشهای 2و3و6 در مورد تناسب، سری ها، توزیع نسبت و ضرایب صحیح بخش 4، روشهای محاسبه سطح و حجم. توضیح روشهای معمول برای محاسبه ریشهای مربع و مکعب می اشد اما نتایج را به کمک محاسبه با نمادهای عددی بدست می آورد.
بخش 5: مشاوره های ساختمانی. حجم مکعب، متوازی السطوح، هرم ناقص هرم سه وجهی، هرم، استوانه، چهارضلعی. مخروط و مخروط ناقص و کره بعضاً تخمینی و بعضاً با 3-Pi
بخش 7: زیادی ها و کسرها: اشکال خطا و اشکال خطا دوگانه.
بخش 8: آرایش مستطیلی: بیان کننده روشهای محاسبه برای حل معادلات 3 مجهولی یا بیشتر. شامل بکارگیری اعداد منفی (مرکز برای اعداد مثبت و سیاه برای اعداد منفی) قواعد اعداد صحیح.
بخش 9: مثلث های کامل: کاربرد تئوری فیثاغورث و مثلث های متشابه، حل معادلات درجه ها با توضیح الگوریتم ریشه مربع، تنها معادلات به شکل X2+ax=b با a و b مثبت
Sunzi 4
روشهای کاربردی ریاضی خود را نوشته. شامل «باقیماندة مسائل چینی» یا «مسئله Master Sun» . n را پیدا کرده وقتی که شما با تقسیم 3 باقیماندة 2 را بدست میآورید، با تقسیم بر 5 باقیماندة 3 را بدست می آورید و با تقسیم بر 7 باقیماندة 2 را بدست می آورید. راه حل او: اعاد 40، 63 و 30 را جمع کنید تا به عدد 233 برسید، از عدد 210 کم کنید تا به عدد 23 برسید.
مقاله تابع متناوب
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 67 کیلو بایت |
تعداد صفحات | 11 |
تابع متناوب
تعریف:
تابع f را متناوب گوئیم هرگاه وجود داشته باشد به طوری که:
کوچکترین مقدار مثبت t را در صورت وجود با T نشان داده و به آن دوره تناوب اصلی تابع گوئیم ( و و t بستگی به x ندارد) به عبارت دیگر در تابع متناوب دوره تناوب عبارت است از کوچکترین مقدار مثبت که وقتی به متغیر اضافه شود مقدار تابع فرق نکند.
دورة تناوب روی نمودار: قسمتی از نمودار که بر اساس آن بتوان قسمتهای دیگر را رسم کرد.(الگویی از یک نمودار میباشد)
قرارداد:
هرجا صحبت از دوره تناوب می کنیم منظور دوره تناوب اصلی یا کوچکترین دوره تناوب تابع است.
نکته 1: تابع ثابت متناوب است و هر عدد حقیقی می تواند دوره تناوب آن باشد ولی کوچکترین دوره تناوب (دوره تناوب اصلی) ندارد.
نکته 2: در توابع ثابتی که به طور متوالی و منظم ناپیوسته هستند فاصله دو نقطه انفصال متوالی دوره تناوب اصلی تابع است.
نکته 3:ممکن است مجموع، تفاضل و… دو تابع که هیچکدام متناوب نیستند متناوب باشد.
پژوهش در مورد آموزش ریاضی
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 20 کیلو بایت |
تعداد صفحات | 14 |
پژوهش در مورد آموزش ریاضی
مقدمه :
تفکر درباره میزان توانایی افراد برای یادگیری چیزی نیست . اما بسیاری یافته های پژوهشی جدید نشان داده اند توانایی ارتباط دادن اطلاعات جدید با دانش پیشین برای یادگرفتن حیاتی است . درک و فهم و یادسپاری یا یادگیری موضوعی که کاملا ناد آشناست امکان پذیر نیست . برای درک و فهم تکلیفی که در دست است . داشتن مقداری دانش پیشین ضروری است . امنا داشتن دانش پیش نیاز هم برای اطمینان از رسیدن به نتایج مناسب کافی نیست . بلکه افراد باید دانش پیشین خود را فعال کنند تا بتوانند از آن برای درک و فهم و یادگیری استفاده کنند. پژوهش نشان می دهد دانش آموزان همیشه هم نمی توانند بین مواد جدیدی که آموزش می بینند و آنچه پیشض تر می دانند ، ارتباط بر قرار کنند . همچنین ، وقتی معلمان ره دانش پیشین یادگیرنده توجه جدی می کنند و آنرا به مثابة نقطة آغازین آموزش به کار می روند ، یادگیری ارتقا می یابد .
در کلاس درس
معلمان می توانند به دانش آموزان برای فعال کردندانش پیشین کمک کنند تا آن را برای انجام تکلیفی که در دست دارند ، به کار ببرند ، این کار به شیوه های متعددی قابل انجام است :
• برای اطمینان از آن دانش آموزان پیشین ضروری را دارند و نیز برای فعال کردن آن ، معلمان می توانند محتوای درس را قبل از تدریس به بحث بگذارند .
• اغلب، دانش پیشین دانش آموزان کامل نیست یاباورهای نادرست و بدفهمی های بارزی در آن وجود دارد . بنابراین برای معلمان ، تنها دانتن این که دانش سآموزان بایددانشی در بارة موضوعی که ارائه می شود داشته باشند ، کافی نیست ، بلکه لازم است ، به تفصیل دانش پیشین دانش آموزان را بررسی کنند تا باورهای نادرست و بدفهمی ها را بشناسند .
• امکان دارد معلمان نیاز داشته باشند ه عقب برگردند تا مواد پیش نیاز فهم را فراهم آورند ، یا از دانش آموزان بخواهند برای آماده شدن کارهایی را انجام دهند .
• معلمان می توانند به شیوه ای سؤال بپرسند که به دانش آموزانکمک کند بین آنچه می خوانند آنچه پیش تر می دانستند ، ارتباطی بیابند .
• معلمان تأثیرگذار می توانند برای برقراری ارتباطات و فهم روابط به دانش آموزان کمک کنند . آنان می تواننداین کار را از طریق تهیة الگو یا چارچوبی انجام دهند که دانش آموزان را قادر برای بهبود عملکرد ، آن را به مثابه تکیه گاهی تلاش هایشان به کار گیرند .
اهداف فصل
1- کسب آگاهی دربارة چیستی یادگیری از طریق همیاری ،
2- آشنایی با ساختار یادگیری از طریق همیاری،
3- آشنایی را رش های یادگیری از طریق همیاری ،
4- تبیین مزیت های استفاده از گروه های همیار در بادگیری ،
5- مقایسة یادگیری از طریق همیاری و یادگیری تسلط یاب ،
آشنایی به راه و روش کسب مجهولات
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 38 کیلو بایت |
تعداد صفحات | 56 |
آشنایی به راه و روش کسب مجهولات
اهداف مطالعه روش تحقیق
1-آشنایی به راه وروش کسب مجهولات <- مسئله و مشکل معلوم و مشخص است به دنبال عوامل ایجاد کننده هستیم 2-آشنایی به راه وروش دستیابی به حقایق <- حقیقت برای ما ناشناخته است و به دنبال کشف وبا ایجاد آن هستیم
آشنایی با مسائل ومشکلات موجود در انجام تحقیق
آشنایی به راه وروش های علمی تحقیق ازطریق مطالعه نظری وکسب تجربیات عملی
کسب آمادگی لازم برای انجام یک تحقیق
علم چیست؟ عبارت است از تراکم سیستماتیک اطلاعات ودانستنیها قابل اثبات به عبارت دیگر روش کشف مجهولات از طریق معلومات یا توافق فکری و توافق نظری
اهداف علم
1-فرارفتن از حد توصیف 2-مدرج ساختن ابزار شناخت ورابطه های علی سنجش 3-پایداری پدیده ها 4-تعین رابطه تقدم 5-تعیین تکرارپذیری
1-
2-
3-آنچه از روابط پدیده ها بدست می آید حقیقی است یا خیر
4-علم بدنبال اثبات تقدم علت بر معلول است
5-آیا اگر به نتیجه یک بررسی علمی دست یافتیم در صورت تکرار برسی وآزمون نتایج یکسان بدست می آید
مختصات علم
1-از روش خاص پیروی میکند
2-ابطال پذیر است وبدلیل ابزار وفنون جدید وشرایط زمان ومکان جامعه آماری باعث یافته های جدید علمی میشود که علوم قبلی را ابطال میکند
3-دارای تکامل طولی و عرضی است پیشرفت های بدست آمده در یک زمینه علمی بدون منسوخ کردن ونفی علوم قبلی گسترش می یابند و از نظر عرفی رشد وتکامل می یابند.( مثال کشف عناصر موجود در طبیعت)
تکامل طولی علم باعث نفی یافته های قبلی میشود(مانند کشف گردش زمین به دور خورشید )
هدف علمشناخت حقیقت است
شیوه های شناخت
1-روش حجیت (تقلید محض) Authortarian mode
از طریق استناد ومراجعه به کسانی که دارای صلاحیت علمی واجتماعی لازم می باشند بدست می آید ومیزان صلاحیت وارجحیت وشهرت فرد تاثیر بسیاری دارد وا ندیشه چندانی نمی طلبد
روش پررمزوراز mysterical mode
از طریق تاکید بر نیروهای برتر و یا ماوراء طبیعه در حدود شناخت روابط بین پدیده ها بر می آیند
روش منطقی(فردگرایانه)Rationalistic mode
هر چیزی براساس عقل ومنطق قابل شناخت میباشد. در این روش روشهای قبلی مردود هستند وهر چه از طریق اندیشه و عقل بدست می آید قابل قبول میباشد(دکارت)
روش علمی scintific
در این روش از طریق حس وتجربه واقعیت مسائل روشن وقابل شناخت میشوند. و در بین تمام روشها بیشترین استفاده را در شناخت دارد هر چند ممکن است که از سایر روشهای شناخت به منظور مراحلی از روش تحقیق استفاده شوند ولی در نهایت بایستی از طریق روش علمی تایید شوند
روش –شیوه Metod
دستیابی به نتایج علمی میسر نیست مگر با روش شناسی صحیح
روش(دکارت) راهی است که برای دستیابی به حقیقت علوم باید پیمود وبه عبارتی مجموعه تدابیر وشیوه هایی است که برای شناخت حقیقت و برکناری از لغزش به کار برده میشود و به طور کلی به سه چیز اطلاق میشود
مجموعه طرق که انسان را به کشف مجهولات وحل مشکلات هدایت میکند
مجموعه قواعد که به هنگام بررسی وپژوهشی واقعیات باید به کار برده شود
مجموعه ابزار وفنون که راهبری از مجهولات به معلومات را میسر میکند
ویژگیهای روش
1- انتظام پذیر بودن systematic 2-عقلایی بودن Rationalistic
3-روش علمی Emetion 4-واقعیت گرایی Reality
5-شک دستوریMetodcal doobt
1-انتظام پذیر بودن روش ممکن است مجموعه ای از اقدامات مختلف باشد وبایستی تقدم وتاخیر آن رعایت شود ودر غیر این صورت نتیجه ای حاصل نمی شود.
2-عقلایی بودن هر روش منظمی باید بر عقل وفرد منطبق باشد و بنابراین روشهای انتظام پذیر که ناشی از توهم وتخیلات واحساسات باشد پذیرفتنی نیست
روح علمی هر روش منظم وعقلایی باید دارای روح علمی نیز باشدکه مستلزم شرایطی چون بی طرفی خویشتن دارای صعه صدر وتواضع است.
واقعیت گرایی کشف قوانین درست تا نظریات مطقن باید از مسائلی چون درون کاوی-درون نگری یا شهودگرایی و هر آنچه را که موجب دوری از واقعیت میشود جدایی یابد
شک دستوری در این روش محقق به دنبال پی ریزی روشی است که بدور از تقلید صرف یا حافظه محض و یا تعقل واندیشه مبتنی بر شک دستوری مقدمه دانش مستقل را فراهم نماید.
قواعد و ویژگیهای تحقیق علمی
قاعده تجاهل یعنی خود را به جهل زدن و پاک نمودن ذهن از هر گونه پیش داوری وکنار گذاشتن کلیه محفوظات که باعث عدم بی طرفی میشود واحساسات وتعصبات را در امر تحقیق دخالت میدهد
عینیت گرایی هر آنچه را می بینیم ملاک عمل قرارداده و حتی الامکان در جمع آوری اطلاعات به روش علمی استفاده نماییم و از روش ذهنی تنها در تبیین استدلالها و تجزیه وتحلیل ونتیجه گیری مطالب استفاده کنیم
تحدید مصادیق ( محدود کردن) مشخص نمودن حدود یک مسئله جهت جلوگیری از دخالت عوامل خارجی باید موضوع مورد بررسی را به کوچکترین اجزا ممکن تجزیه نمود و
حدود هر مورد را مشخص نماییم این امر باعث میشود تا عوامل خارجی درامر تحقیق دخالتی نداشته باشند از طرفی امکان سنجش واندازه گیری آن فراهم شود.
به هم پیوستگی در قاعده به هم پیوستگی محقق باید در تجزیه وتحلیل وتصمیم گیری اصل کلیت را در نظر داشته باشد وبا توجه به ارتباط بین امور آنها راتجزیه وتحلیل کند و چنانچه جزئیات موضوعی به صورت منفرد ومجزا مورد مطالعه قرار گیرد باید در نهایت تاثیرات متقابل آن با دیگر اجزاء مورد بررسی قرارگیرد مانند بررسی ابعاد و اجزا ساختار سازمانی به صورت جزیی و بعد تجزیه وتحلیل آن با دیگر اجزا مورد بررسی قرار گیرد مانند بررسی ابعاد و اجزا ساختار سازمانی به صورت جزیی و بعد تجزیه وتحلیل آن در یک قالب کلی وپیوسته
افزایشی بودن نتایج حاصل از تحقیقات علمی باید اطلاعات جدیدی به دانش بشری اضافه کند وموجب گسترش مرزهای آن گردد بنابراین سازمان دهی و بیان مجدد دانسته های قبلی نمی تواند تحقیق علمی محسوب شود.
تجربی بودن وجود امکان آزمایش علمی و عینی فرضهای ذهنی در مقابل واقعیات است
نظم داشتن در تحقیق علمی باید از روشهای سیستماتیک ومنظم بهره جست
تحقیق طلبی محقق باید در حوضه مورد تحقیق ومطالعه از آگاهی ودانش نسبی برخوردار باشد
تعمیم پذیری نتایج حاصل از تحقیق باید قابلیت عمومیت دادن آن به جامعه آماری را داشته باشد
انسان اولیه چگونه می شمرد؟
دسته بندی | ریاضی |
فرمت فایل | doc |
حجم فایل | 61 کیلو بایت |
تعداد صفحات | 17 |
انسان اولیه چگونه می شمرد؟
در آغاز، انسان اولیه برای نشان دادن عدد مورد نظر خود از زبان اشاره استفاده می کرد. شاید به ببری که کشته بود یا به سر نیزة همسایه اش اشاره می کرد. یا شاید از انگشتانش برای نشان دادن عدد استفاده می کرد. سه انگشت دست معنی» سه« می داد، خواه سه نیزه یا سه ببر دندان دشنه ای، یا سه غار یا سه سر نیزه.
می دانیم که در زندگی روزمره» عدد« کلمه یا نشانه ای است که بر مقدار و تعداد معینی دلالت می کند.اما لازم نیست آنچه را که ما درباره اش گفتگو می کنیم، مشخص کند. مثلاَ» سه« یا» 3« می تواند یه معنی سه هواپیما، سه قلم یا سه کتاب باشد.
در ابتدا، انسان اولیه می توانست تا دو بشمارد.امروزه هنوز در جهان، قبایلی ابتدایی مانند بومیان بدوی استرالیا» ابورجین« ها وجود دارند که فقط سه عدد می شناسند:یک،دو و بسیار. اگر یک نفراز این قبیله سه عدد بومرانگ(*) یا بیشتر داشته باشد، برای شمارش آن فقط عد بسیار را به کار می برد. البته بیشتر انسانهای اولیه تا ده، یعنی مجموع تعداد انگشتان دستان می شمردند. بعضی فقط تا 20 یعنی مجموع تعداد انگشتان دست و پایشان می شمردند.
هنگامی که با انگشتان دست شماره می کردند، تفاوتی نمی کند که از انگشت کوچک دست یا از انگشت شست شروع کنید. اما بین برخی از اقوام برای این کار قاعده هایی وجود داشت. مثلاَ» زونی« ها (قبیله ای از سرخپوستان آمریکای شمالی) شمردن را از انگشت کوچک دست چپ شروع می کردند.یا سرخپوستان اتوماک آمریکای جنوبی شمردن را با انگشت شست آغاز می کردند.
آدمی چون متمدن تر شد، از ترکه چوب، ریگ و گوش ماهی برای نمایش اعداد استفاده می کرد.آنها سه ترکه یا ریگ را در کنار هم ردیف می کردند که معنی»سه«را برساند. عده ای باایجاد شیار هایی بر روی چوب یا گره هایی که به یک طناب می زدند منظورشان را از عددی که می خواستند بیان کنند
می رسانیدند. به این ترتیب همیشه چوبخط یا طناب حساب را با خودشان همراه داشتند یا آن را جایی حفظ می کردند.
انسان از چه وقتی ارقام عددی را به کار برد؟
تا آنجا که بر ما معلوم است در حدود 3000 سال پیش از میلاد، مصریان قدیم و مردمان بین النهرین (سرزمین بین دجله و فرات در عراق امروز) علاماتی برای نوشتن اعداد داشتند. این مردمان با آنکه بسیار دور از هم می زیستند،هر یک مستقلاَ موفق به اختراع یک رشته از ارقام شدند. ارقام سادة آنها چون 1،2و3 المثنای چوب و چوبخط انسانهای نخستین بود. جالب اینجاست که در بسیاری از دستگاههای ارقام که در سراسر جهان کشف شده است رقم 1 به شکل یک خط کوتاه (مانند یک چوب)یا به شکل یک نقطه (مانند ریگ) نوشته می شد.
مردم باستان اعداد را چگونه می نوشتند؟
مصریان باستان ارقام را روی پاپیروس می نوشتند. پاپیروس نوعی کاغذ بود که از نی نیزارهای کناره رود نیل تهیه می شد، یا آنها را روی کوزه ها نقش می کردند یا بر دیوارهای معبدها و هرمهایشان می کندند.
بابلیها از سومریها آموختند که چگونه ارقام را بر لوحه های گلی بنویسند.
چینیهای قدیم با مرکب و قلم خیزران یا قلم پر بر روی پارچه می نوشتند. مایاهای آمریکای مرکزی، بی آنکه با دیگر تمدنهای دنیا ارتباط داشته باشند، یکی از جالبترین دستگاهای عددی را به وجود آوردند. آنها برای نمایش ارقام فقط از سه علامت استفاده می کردند، یک تقطه. ، یک خط مستقیم ـ ، . یک شکل بیضی .