دانلود مقاله-تحقیق-پروژه-کارآموزی

مرجع کامل خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

دانلود مقاله-تحقیق-پروژه-کارآموزی

مرجع کامل خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

پاورپوینت انسان- طبیعت- معماری (تحلیل مرکز پژوهشی- تحقیقاتی درمانی دریاچه ارومیه)

تحلیل مرکز پژوهشی تحقیقاتی درمانی دریاچه ارومیه و شناخت فضاها و ایده های طرح
دسته بندی معماری
بازدید ها 29
فرمت فایل ppt
حجم فایل 3728 کیلو بایت
تعداد صفحات فایل 9
پاورپوینت انسان- طبیعت- معماری (تحلیل مرکز پژوهشی- تحقیقاتی درمانی دریاچه ارومیه)

فروشنده فایل

کد کاربری 4366
کاربر

تحلیل از نظر ایده طرح، مراحل طراحی پلان، پلان و مقطع و نمای پروژه، ایده مرکز درمان های طبیعی، پرسپکتیوهای مجموعه


پاورپوینت تحلیل فضای شهری (پل معلق آمل)

اطلاعات کامل در مورد پل معلق و شهر آمل
دسته بندی معماری
بازدید ها 17
فرمت فایل pptx
حجم فایل 12996 کیلو بایت
تعداد صفحات فایل 32
پاورپوینت تحلیل فضای شهری (پل معلق آمل)

فروشنده فایل

کد کاربری 4366
کاربر

شامل: موقعیت شهر آمل، پیشینه تاریخی، عوامل تشخیص دهنده بافت عامل، مراکز و گذرهای اصلی محلات، معرفی سایت پل معلق و فضاهای مربوط به سایت، بررسی امکانات و محدودیت ها(جدول SOAT)، خصوصیات (کالبدی- عملکردی)، خصوصیات (ادراکی- بصری)، خصوصیات (اجتماعی- اقتصادی)، ارائه اهداف و راهبردها و سیاست ها و ...


تحلیل سیستمی پیچیدگی

نظریة پیچیدگی مطمئناً راه جدیدی برای نگاه کردن به پدیدههاست و به تدریج در حال تغییر دادن تکنیکهای ریاضی سنتی است به همین دلیل نیز برخی از دانشمندان نظریة پیچیدگی را گنگ و مبهم میدانند و آن را شایستة عنوان علم نمی‌شناسند
دسته بندی کامپیوتر و IT
بازدید ها 16
فرمت فایل doc
حجم فایل 26 کیلو بایت
تعداد صفحات فایل 20
تحلیل سیستمی پیچیدگی

فروشنده فایل

کد کاربری 1024
کاربر

تحلیل سیستمی پیچیدگی

مقدمه
یکی از وجوه اساسی علم که آن را از هنر و ادبیات متمایز می کند امکان بیان آن به کمک اعداد و کمی کردن آن با استفاده از روابط ریاضی است.این پدیده چنان فراگیر شده است که بسیاری از اوقات کار علمی براساس کیفیت ریاضیات آن سنجیده می‌شود و نه محتوای تجربهاش. بهکارگیری روابط ریاضی، علاوه بر ایجاد شرایط جدید برای نگرش به پدیدهها (نوآوری)، نوعی سیستم ارزشی برای اندازه گیری و کمی کردن نیز بهوجود می آورد.
نظریة پیچیدگی مطمئناً راه جدیدی برای نگاه کردن به پدیدههاست و به تدریج در حال تغییر دادن تکنیکهای ریاضی سنتی است. به همین دلیل نیز برخی از دانشمندان نظریة پیچیدگی را گنگ و مبهم میدانند و آن را شایستة عنوان علم نمی‌شناسند. نیاز به تکنیکهای جدید ریاضی جهت مواجهه با علوم جدید، موضوع تازه‌ای نیست (ریاضیات نیوتونی و لایبنیتز، توپولوژی پوآنکاره، هندسة غیر اقلیدسی ریمان، آمار بولتزمن و نظریة مجموعههای کانتور). تمام این دیدگاههای جدید در ریاضیات به دلیل نیاز به کمی کردن نظریه‌های جدید علمی که در آن زمان پا به عرصه وجود گذاشته بودند ابداع شدند.
بهتر است در اینجا نگاهی به اجزای اصلی یک سیستم پیچیده بیندازیم. به طور کلی هر سیستم پیچیده یک سیستم کاملاً عملکردی است که شامل اجزای متغیر و وابسته به هم است. به بیان دیگر، برخلاف یک سیستم کاملاً سنتی (نظیر هواپیما) اجزا دارای ارتباطات دقیقاًٌ تعریف شده و رفتارهای ثابت یا مقادیر ثابت نیستند و عملکردهای انفرادی آنها نیز ممکن است با روشهای سنتی قابل تبیین نباشد. به رغم این ابهام، این سیستمها بخش اعظم جهان ما را تشکیل می‌دهند و ارگانیسمهای زنده و سیستمهای اجتماعی و حتی بسیاری از سیستمهای غیر ارگانیک طبیعی نیز در زمرة آنها قرار می‌گیرند.
پیچیدگی ایستا (نوع اول). براساس نظریة پیچیدگی اجزایی که دارای برهم کنشهای بحرانی هستند خود را به گونه‌ای سازمان دهی می‌کنند که به سوی ساختارهای تکاملی پیش روند و سلسله مراتبی از خصوصیات سیستمهای غالب را ایجاد کنند. در این نظریه سیستمها را باید به صورت یک کل نگریست و برخلاف دیدگاههای سنتی، از تجزیه و ساده سازی آنها پرهیز کرد. به دلیل وجود عوامل غیر خطی در سیستمهای به شدت وابسته به هم، دیدگاههای سنتی قادر به تجزیه و تحلیل نیستند. در اینجا علتها و معلولها قابل تفکیک از هم نیستند و مجموع اجزا برابر با کل نخواهد شد. رویکرد مورد استفاده در نظریة پیچیدگی بر مبنای تکنیکهای جدید ریاضی قرار دارد که سر منشأ آنها را باید در شاخه های مختلف چون فیزیک، زیست شناسی، هوش مصنوعی، سیاست و ارتباطات راه دور جستجو کرد. ساده‌ترین شکل پیچیدگی که معمولاً توسط ریاضی دانان و دانشمندان مورد مطالعه قرار می گیرد، در ارتباط با سیستمهای ثابت است. در اینجا فرض می کنیم که ساختار مورد نظر در طول زمان تغییر نمی کند. به بیان دیگر، به اصطلاح دانشمندان سیستم، با یک تصویر ثابت از سیستم سرو کار داریم. به عنوان مثال، می توان به یک ریز تراشة کامپیوتر نگاه کرد و آن را پیچیده یافت. می‌توان آن را با یک مدار الکترونیک مرتبط دانست و برای تعیین پیچیدگی نسبی آن، آن را با سیستمهای جانشین مقایسه کرد (مثلاً از نظر تعداد ترانزیستورها). می‌توان همین کار را با اشکال زندة حیات نیز انجام داد و آنها را بر حسب تعداد سلولها، تعداد ژنها و غیره اندازه گیری کرد. تمامی این جنبه های کمی، فاقد مهمترین مسئلة تفکر در پیچیدگی هستند و آن این است که آیا واقعاًٌ پیچیدگی به تعداد اجزا بستگی دارد و چرا پیچیدگی سیستمی مثلاً با 100 جزء متفاوت با سیستم دیگر با همین تعداد اجزاست.
برای نگرشی دقیقتر به این سئوال، نیازمندیم به دنبال الگوها و آمارهای کمیتها باشیم. روشن است که پیچیدگی ترتیبی از 50 توپ سفید و 50 توپ سیاه، از پیچیدگی 5 توپ سیاه، 17 توپ سفید، 3 توپ سیاه، 33 توپ سفید و 42 توپ سیاه کمتر است. با این حال معنای چنین ترتیبی نامشخص است. آیا ترتیب تصادفی است یا معنادار؟ هنگامی که چنین تحلیلهایی به سه بعد تعمیم داده می‌شوند و بیش از یک مشخصه برای هر جز تعریف می‌شود (اندازه، چگالی، شکل) پیچیدگیهای احتمالی به نحوه غیر قابل تصوری افزایش می یابند و توانایی ریاضیات موسوم را به چالش فرا میخوانند. در اینجا صرفاً یک سطح مورد نظر قرار داشت ولی در طبیعت سطوح مختلفی از ساختار در تمام سیستمها وجود دارند و این سطوح باعث افزایش پیچیدگی خواهند شد (پیچیدگی یک مولکول، به علاوة سلول، به علاوة ارگانیسم، به علاوة اکوسیستم، به علاوة سیارة زمین و ...). این پدیده باعث می‌شود تا ریاضیات پیچیدگی ایستا نیز دشوار باشد.
پیچیدگی پویا (نوع دوم). با افزایش بعد چهارم، یعنی زمان، موقعیت بسیار بغرنجتر خواهد شد. از زاویة دید مثبت، شاید تشخیص الگوها با تغییراتشان در زمان ساده تر از حالت سکون آنها باشد (فصول، ضربان). اما از سوی دیگر ممکن است با اجازه دادن به اجزا برای تغییر با زمان، الگوهای حالت سکونی را که قبلاً شناسایی کرده بودیم و طبقه بندیهای انجام گرفته بر پایة آنها از دست بروند (برگها سبز هستند، به جز در پاییز که زرد می‌شوند و در زمستان که اصلاً وجود ندارند!).
تشخیص عملکرد، یکی از راههای اصلی تحلیل علمی است. پرسش «سیستم چه کاری انجام می‌دهد؟» و به دنبال آن «چگونه این کار را انجام می‌دهد؟» هر دو دارای مفهوم حرکت در زمان هستند. با توجه به ضعف ما در بررسی تجربیات تکرارپذیر، مهم خواهد بود که تشخیص دهیم آیا پدیدة مورد مطالعه ایستاست یا آنکه دارای تغییرات دوره‌ای است. علم همواره با آزمایش و تأیید آزمایشها سروکار دارد و پیشنیاز این امر، داشتن نمونه‌های متعدد است. روابط ریاضی مورد استفاده به گونه‌ای هستند که برای داده‌های یکسان، همواره پاسخهای یکسانی را ارائه می کنند و این یک نکتة اساسی در نظریة پیچیدگی است. ما در بسیاری از اوقات ناچار می‌شویم تا به طور مصنوعی پیچیدگی پدیدة مورد بررسی را کاهش دهیم تا در چارچوب محدودیت فوق قرار گیریم. یک فرد دارای وجوه گوناگونی است ولی، او را با آن دسته از مشخصه‌هایش تعریف می کنیم که در طول زمان بدون تغییر باقی می‌مانند (و یا قابل پیش بینی هستند) نظیر نام، رنگ پوست، ملّیت یا سن، شغل، قد و مانند آنها. نظریة پیچیدگی نیازمند آن است که سیستم را به صورت یک کل مورد بررسی قرار و از آن تعریفی به دست دهیم که تمامی جنبه‌های آن را پوشش دهد و در این نقطه است که روشهای سنتی و ریاضی پاسخگو نخواهند بود.
پیچیدگی تکاملی (نوع سوم). یکی از پدیده‌های مهم در اطراف ما پدیده‌های ارگانیک هستند. بهترین مثالهای مربوط به این پدیده‌ها، مربوط به نظریة نوین داروین در انتخاب طبیعی است که طی آن سیستمها در طول زمان تکامل پیدا می‌کنند و سیستمهای دیگری ابداع می‌شوند (مثلاً یک موجود دریایی تبدیل به یک موجود خشکی می‌شود). این شکل از تغییر که ظاهراً منتهایی نیز برای آن قابل تصور نیست، بسیار بغرنجتر از آن است که پیش از این انگاشته می‌شد. می‌توان همین مفهوم تغییرات غیردوره‌ای را با مواردی چون سیستمهای ایمنی بدن، آموزش، هنر و کهکشانها نیز توسعه داد. طبقه بندی پیچیدگی، عملاً به معنای برداشتن قدم دیگری، به سوی تاریکی خواهد بود چرا که اگر امکان شمارش مصداقهای آن وجود نداشته باشد چگونه می‌توان نام علم را بر آن نهاد؟
پاسخ این سئوال به مبحث الگو باز می‌گردد. در هر سیستم پیچیده، ترکیبات بسیار زیادی از اجزا می‌توانند وجود داشته باشند و در حقیقت می‌توان مشاهده کرد که بسیاری از این ترکیبات پیش از این هرگز در طول حیات جهان وقوع پیدا نکرده‌اند. با بررسی تعداد زیادی از سیستمهای متفاوت، می‌توان شباهتها (الگوها) را در آنها تشخیص داد و طبقه بندی هایی را برای تعریف آنها ایجاد کرد. این تکنیکها، که می توان آنها را آماری دانست، بسیار مناسب اند و راهنمایی‌هایی کلی ارائه می‌کنند، ولی فاقد یک نیازمندی اساسی در کار علمی هستند و آن قابلیت پیش‌بینی است. در به کارگیری علم (فناوری) ما نیازمند آن هستیم که سیستم را به گونه‌ای طراحی و ایجاد کنیم که وظایف خاصی را به انجام برساند واین یعنی خواسته‌ای که به نظر نمی‌آید از دیدگاه تکاملی قابل بررسی و تعمیم باشد.
پیچیدگی خود سازمان دهی (نوع چهارم). آخرین شکل سیستم پیچیده، شکلی است که مهمترین و جدیدترین نوع در نظریة پیچیدگی محسوب می‌شود. در اینجا محدودیتهای داخلی سیستمهای بسته (نظیر ماشینها) با تکامل خلاقانة سیستمهای باز (نظیر مردم) با همدیگر تلفیق می‌شوند. در این دیدگاه سیستم با محیط خود تکامل می یابد به گونه‌ای که پس از مدتی، دیگر سیستم در طبقه بندی قبلی خود نمی‌گنجد. در اینجا می‌بایستی عملکردها و وظایف سیستم به گونه‌ای تعریف شوند که چگونگی ارتباط آنها با جهان وسیع خارج از سیستم مشخص شود. از انواع قبلی سیستمهای گسسته و سیستمهای خود نگهدارنده، به نظر می‌آید که به مفهومی از پیچیدگی رسیده‌ایم که نمی‌توان آن را از دیگاه کیفی یک سیستم جدا دانست.
عملاً سیستمهای خود تکاملی نظیر بوم‌شناسی و زبان سعی دارند عملکردهای خود را کاملاً با تطابق با محیط شکل دهند و عملاً از این دیدگاه می‌توان روش شناسی‌ای را تدوین کرد که طی آن فرایند طراحی از درون سیستم به برون آن سوق داده شود. ما می‌توانیم به جای طراحی خود سیستم، محیط آ ن را طراحی کنیم (محدودیتها) واجازه دهیم تا سیستم خود به گونه‌ای تکامل یابد تا پاسخ صحیح را بیابد، نه آنکه پاسخی از طرف ما به سیستم تحمیل شود. این دیدگاه در فناوری ارگانیک، دیدگاهی جدید و نتایج آن در حال حاضر در مهندسی ژنتیک و طراحی مدارها در حال بررسی است.
از دیدگاه نظریة پیچیدگی، بسیار مایل هستیم پیش‌بینی کنیم کدام حل غالب از بین شقها و محدودیتهای گوناگون رخ خواهد داد.


جزوه درسی تایپ شده تجزیه و تحلیل سیستم ها

برای آشنایی بیشتر با سیستم باید ادبیات سیستم بررسی شودکه در ابتدا مختصری از تا ریخچه جهان بینی های مربوطه را میاوریم و سپس به تعریف سیستم خواهیم پردا خت
دسته بندی کامپیوتر و IT
بازدید ها 18
فرمت فایل doc
حجم فایل 129 کیلو بایت
تعداد صفحات فایل 97
جزوه درسی تایپ شده تجزیه و تحلیل سیستم ها

فروشنده فایل

کد کاربری 1024
کاربر

جزوه درسی تایپ شده تجزیه و تحلیل سیستم ها


تجزیه وتحلیل سیستم
برای آشنایی بیشتر با سیستم باید ادبیات سیستم بررسی شودکه در ابتدا مختصری از تا ریخچه جهان بینی های مربوطه را میاوریم و سپس به تعریف سیستم خواهیم پردا خت .
1-تاریخچه جهان بینی ها
در تاریخ بشر عمدتاً دو مسیر فکری داشته است خط فکری اول بنامهای اتمیسم A tomism عنصر گرایی lementalism E و تجزیه گرایی Reducationism شناخته شده است ومسیر دوم تفکرات بشری بنام های ارگانیکی organism وکل گرایی wholism معرفی شده اند این دو طرز تفکر زیر بنای تفکرات سیستمی یا جهان بینی سیستم هستند که بصورت خلاصه ومجمل بررسی میشوند.
1 - مکتب اتمیسم
این مکتب از قدیمی ترین شیوه های جهان بینی است که در طول تاریخ تحولات فراوانی داشته است و از قرن سوم وچهارم قبل از میلاد شروع شد لئوسیپوس و دموکریت از پایه گذاران این مکتب بشمار میروند.
نظریه این دو نفر مبنی بر این است که :
جهان از تعداد بیشماری ذرات تقسیم ناپذیروتجزیه نشدنی تشکیل شده است این ذرات همان اتم های (زبان یونانی ) هستند که خود دارای اشکال متفاوت میباشند اجسام مادی از اتمهای نسبتاً سنگین وارواح از اتمها ی سبک ساخته شده اند دراین مکتب پدیده های جهان نتیجه برخورد اتفاقی اتمها است و بر تعادل اتمها علت و غایتی متصور نمی باشد .
نظریه اتمی در قرون پس از میلاد تا قرن 15 در حوزه تفکرات پیروان زیادی نداشت وبعد از آن با تحولات فکری و فرهنگی احیا گردید و ابعاد جدیدی پیدا کرد کشف قوانین و پیشرفتهایی که در علوم فیزیک و سیستمی و تغییراتی در جهان بینی اتمی ایجاد کرد و شاخه های جدید تجزیه گرایی و عنصر گرایی متولد شدند در نظریه تجزیه گرایی موجودیت را می توان به اجزایی تقسیم بندی کرد و از راه مطالعه اجزاء موجودیت اصل را شناسایی کرد. تفکرات عنصر گرایی نیز با تفکرات تجزیه گرایانه شباهتی نزدیک و زیاد داشت . در ادامه تحول مکتب اتمیسم جهان بینی مکانیستی یا جهان بینی مادی پا به عرصه هستی گذاشتند . در نگرش مکانیستی ماشین های حیاتی یا مکانیزمهای زنده همانند دستگاههای مکانیکی از قوانین فیزیک و شیمی پیروی می کنند به عبارت دیگر بین اشیاء زنده و اشیاء بی جان تفاوتی متصور نمی شوند در این دیدگاه ماشین ازاجزایی تشکیل می شود که هر کدام دارای شکل و عملکردی هستند و کارکرد کل ماشین را می توان با شناخت رفتار هر کدام از اجزاء به شناخت اصل علت و معلولی از ارکان اصلی جهان بینی مکانیستی بوده بر مبنای این اصل شناخت تمامی فرایند ها و پدیده ها در نهایت شناخت حلقه های این زنجیره منجر می شود . در مقابل این تفکرات پدیده ای پیچیده ارگانیکی قرار داشت آیا موجود زنده ماشین است یا فراتر از یک ماشین است آیا جوامع زنده بشری دارای قوانین متفاوتی از قوانین فیزیک هستند و تفکرات مکانیستی را تا مرز بطلان پیش برد .

1- 1 کل بینی و ارگانیسم organism

این تفکر نیز تاریخچه ای طولانی دارد در این دیدگاه جهان مجموعه ای در هم و تصادفی از اتمها به شمار نمی رود بر عکس جهان و کلیه موجودات یک وحدت ارتباطی و ذاتی دارند به عبارت دیگر هستی قانون است و بر آنها قوانینی عمومی و جهان شمول حاکم است . اندیشه کل گرایانه در تاریخ فرهنگهای باستانی چین – هند – ایران و یونان ریشه های عمیقی دارد . در ادامه این تفکرات باورهای اعتقادبه سلسله مراتب وجود و سلسله مراتب قوانین وجود باورهای دیگر همراه شد . از نظر حکمای اسلامی جهان یک کل و یک موجودیت مرتبط می باشد آنها معتقدند که ارتباط موجود جهان بر طبق سلسله مراتبی و در درجاتی صورت می گیرد .




2-بینش سیستمی
روند تکاملی علوم فیزیک نظریه های جدید نسبیت و کوانتوم همراه بود در فیزیک کلاسیک تمام فرآیند ها به ارتباط اتمیک ختم
می شد ولی در فیزیک جدید ضمن تأیید واقعیت وجود اتمها به کلیت پدیده ها نیز توجه شده است با تحولات جدید در علوم فیزیک و شیمی بشر به قلمروهای ناشناخته ای از اسرار جهان رسید . در علوم مادی که در حصار جهان بینی مکانیستی محصور بوده است رها شده و به سوی اتحاد و ارتباط با شعب دیگر علوم گام بر می دارد و تفکر ارگانیستی را پایه گذاری کرد در این نظریه موجود زنده یک سیستم متعالی است که یک پدیده پویاست و مادامی که زنده است این پویندگی را از دست نمی دهد و آرامشی بنام تعادل استاتیکی وجود دارد و به طور مستمر در حال شدن است و برشدن های او اصولی حکم فرماست و تحت دو نیروی متضاد متحول می شوند این تفکر در علوم دیگری مانند روانشناسی ، جامعه شناسی و … تحولات عمده ای پدید آورده است . این نگرش زیربنای جهان بینی سیستمی است .پیشرفتهایی که در سایر دانش ها حاصل شده به طور کلی در پیدایش بینش ها و روشهای جدید علوم انسانی تأثیر به سزایی داشته است . انسان و جوامع انسانی از دیدگاههای جدید سیستمهای باز هستند که همانند سیستمهای متعالی دارای خواصی چون سلسله مراتب نظام قانونمندی و پویایی می باشد .

2- تفکر سیستمی
نگرش مکانیستی با ایجاد مکتب ارگانیسمی مورد انتقاد قرار گرفت برتا لنفی (von bertalanffy )معتقد بود که یک ارگانیسم صرفاًیک مجموعه عناصر جداگانه نیست بلکه سیستمی است که دارای نظام و کلیت می باشد به اعتقاد وی یک ارگانسیم را نمی توان باشناخت تفکر و روشهای معمول در مکاتب مکانیستی شناخت و باید طرز تفکر نوینی را برای شناخت موجودیت های ارگانیک اختراع کرد به عبارت دیگر ارگانیسم یک منظومه دینامیک که از کلیّت و نظام فعالیت ذاتی برخوردار است و به اجزای موجودات به عنوان یک سیستم می نگرد پیشرفتهای عظیمی که در زمینه علوم و تکنولوژی موجب تغییرات شگرف اجتماعی شد و مبنای تفکرات سیستماتیک را پایه گذاری کرد .
3- مبنای تفکرات سیستمی
مبنای تفکرات سیستمی که چشم انداز بینش سیستمی را روشن می کند در قالب های زیر بیان می شود:
1-4 .نقطه آغازین این تفکر مفهوم کلیتی دارد در این اندیشه بر خلاف تفکر اتمیک هر پدیده اساس کار است .
2-4. مفهوم سیستم و تصور یک کل با مفهوم ارتباط بین اجزای سیستم قرین و دارای اهمیت ویژه ای است .
3-4. تمامیت ارتباط های یک سیستم در قالب یک مفهوم و کلی بنام ساخت structure یا نظام organization قابل بیان است .
تعریف سیستم
واژه (سیستم ) از علوم دقیقه ، بویژه فیزیک ، به علوم اجتماعی راه یافته است . فیزیک با ماده ، انرژی ، حرکت و نیرو سر و کار دارد که همگی قابل سنجش بوده ، از قوانینی معین پیروی می کنند . به همین دلیل ، در فیزیک ( سیستم ) را با واژگانی بسیار دقیق و در قالب یک مدل ریاضی که بر وجود روابط معینی میان متغیر ها دلالت دارد تعریف می کنند. به هر حال در علوم اجتماعی که در متغیرهایی بسیار پیچیده تر و اغلب چندی بعدی سر و کار دارند این نوع تعریف کاربرد کمتری دارد . تعریفی که در اینجا ارائه می شود ، یک تعریف کاربردی است . با وجود آنکه این تعریف غیر کمی است ، ولی مانند آنچه که در علوم دقیقه مطرح می شود ، تعریفی کاملاً جامع و کامل است :
« سیستم ، مجموعه از اجزاء و روابط میان آنهاست که توسط ویژگیهایی معین ، به هم وابسته و یامرتبط می شوند و این اجــزاء بــا
محیط شان یک کل را تشکیل می دهند »

این تعریف دو ویژگی دارد :
1 – به اندازه کافی جامع است و کاربرد گسترده دارد .
2 – به اندازه کافی ژرف نگری دارد ؛ به گونه ای که همه عناصر لازم برای تمییز و شناسایی سیستم ها را معرفی می کند .


عناصر سیستم :
عناصر هر سیستم همان اجزای تشکیل دهنده ( یا رخداد های قابل توصیف ) آن هستند . البته بسیاری از این عناصر ، خودشان یک سیستم بحساب می آیند . برای مثال ، یک کلاس درس را یک سیستمی متشکل از دانشجویان ، استاد ، میز ، کتاب و غیره دانسته اند . در حالی که دانشجویان و اساتید نیز سیستم های بسیار پیچیده هایی هستند که از سیستم های متعدد تشکیل شده اند هنگامی که بتوان عنصر از یک سیستم را به منزله سیستمی جداگانه در نظر گرفت ، آن عنصر «خرده سیستمی » از سیستم بزرگ تلقی می شود هر خرده سیستم نیز به منزله یک سیستم ممکن است از خرده سیستم های دیگر تشکیل شده باشد همانطور که ذکر شد فقط به رخدادهایی قابل توصیف را به منزله عناصر شناخته شده سیستم به شمار می آوریم و هنگامی که نتوانیم درون یا محتوای یک خرده سیستم را شناسایی کنیم آن را « جعبه سیاه » می نامیم . جعبه های سیاه ، عناصر ضروری اولیه یا اتم های اولیه تشکیل دهنده یک سیستم هستند . یک نگرش ایستا ، عناصر هر سیستم ، همان بخش هایی هستند که سیستم را تشکیل می دهند . در حالی که در یک نگرش کارکردی ، بخشهایی که وظایف اساسی سیستم را بر عهده دارند ، عناصر آن هستند . به این ترتیب عناصر یک سیستم ، عبارتند :
1- ورودیها
2- فراگرد ( خانه پردازش )
3- خروجیها
4- باز خور کنترلی
ورودیها :
ورودی یک سیستم ممکن است ماده ، انرژی ، انسان ، محصول ، خدمت و اطلاعات باشد . ورودی همان نیروی محرکه سیستم است که نیازهای عملیاتی آن را برطرف می کنند . برای نمونه ، ورودیهای مورد استفاده در برخی از سیتمها عبارتند از : مواد اولیه ای که فراگردهای تولیدی را بکار می اندازند . ورودیهای هر سیستم ، به سه طبقه اساسی زیر قابل تقسیم هستند :
الف) ورودیهای زنجیره ای
ب) ورودیهای تصادفی
ج) ورودیهای بازخور

الف ) ورودی های زنجیره های : ورودی زنجیره ای نوعی ورودی است که خودش نتیجه و خروجی سیستم دیگری است « مانند خروجی سیستم پیش بینی که ورودی برخی سیستم های دیگر – نظیر سیستم طراحی محصول – است » که با سیستم مورد نظر به طور زنجیره ای یا مستقیم مرتبط است .
ب ) ورودی های تصادفی : وجود ورودی های تصادفی در مفهوم آماری آن بر وجود ورودی های بالقوه برای یک سیستم دلالت دارد . سیستم ، ورودی های خود را از میان خروجی های خرده سیستم های گوناگون موجود انتخاب می کند . به این ترتیب می توان هر یک از خروجیهای سیستمهای دیگر را به مثابه یک ورودی متحمل برای سیستم مورد بررسی در نظر گرفت . در نتیجه برای هریک از ورودی های بالقوه در دسترس ، یک احتمال وقوع – بین « صفر» و « یک » - معین می شود .
ج) ورودی های باز خور : برخی از ورودی های یک سیستم ، در واقع بخشی از خروجی های قبلی همان سیستم هستند . این نوع ورودی ها را باز خور می نامند . باز خور فقط نشان دهنده بخش کوچکی از یک سیستم است که برای نشان دادن تفاوت میان وضع مطلوب « دستیابی به هدف » و وضع موجود « عملکرد واقعی سیستم » ، در نظر گرفته می شود .

2- فراگرد « خانه پردازش »
در فراگرد سیستم ورودی به خروجی تبدیل می شود . ممکن است عواملی نظیر ماشین ، انسان ، سازمان ، کامپیوتر، مواد شیمیایی و مانند آن انجام دهنده عمل تبدیل در فراگرد یک سیستم باشند. تحلیلگران همواره مترصد آن هستند که نحوه تبدیل ورودی به خروجی را در فراگرد سیستم شناسایی کنند . هنگامی که نحوه این تبدیل مشخص باشد ، فراگرد را «جعبه سفید » می نامند . معمولاً فراگرد ها یا خانه های پردازش توسط مدیران طراحی می شود . با وجود این ، در بیشتر موارد فراگیری تبدیل بسیار پیچیده است و نحوه تلفیق ورودی ها یا ترتیب تنظیم آنها در آن ممکن است و به تولید خروجی های متفاوتی می انجامد . در این حـالت فراگـرد را
« جعبه سیاه می نامند »بسیاری از مدیران سازمانهای بزرگ توان تشخیص روابط موجود میان اجزای متعدد تشکیل دهنده سازمان خود را ندارند به همین دلیل نمی تواند عوامل موثر در کسب هدف آن را شناسایی کند .

3 – خروجیها
خروجیهای یک سیستم مانند ورودی های آن ،ممکن است نوعی ماده ، انرژی ، محصول ، خدمت و اطلاعات باشد نظیر کار برگهای کامپیوتر ( خروجی های یک سیستم اطلاعاتی ) برق تولید شده ( خروجی یک نیروگاه برق و افراد آموزش دیده )خروجی یک سیستم آموزش دیده . معمولاً فراگردهای تبدیل بیش از یک نوع خروجی دارند . این خروجی ها را می توان به سه دسته تقسیم کرد :
دسته اول ) خروجی هایی هستند که به طور مستقیم توسط سیستم های دیگر مصرف می شوند برای مثال خروجی اصلی یک شرکت تولیدی برای مصرف یا پردازش بیشتر در اختیار مشتریان شرکت قرار می گیرد . یک بیماستان یا واحد آموزشی خدمات خود را بطور مستقیم به ارباب رجوع ارائه می دهد . در واقع هدف همه سیستم ها به حداکثر رساندن این نوع خروجی است معمولاً نسبت به این خروجی به کل ورودی ها را کارائی می نامند .
دسته دوم ) خروجی هایی هستند که در فراگرد تولید همان سیستم در مرحله بعد مصرف می شود گاهی اوقات نیز ضرورت دارد که محصول معیوب خروجی دوباره به فراگرد تولید بازگردد برای مثال در فراگرد تولید شیشه که مقدار خورده شیشه به مواد اولیه صاف شیشه افزوده شود . همچنین خروجی خرده سیستم حسابداری بانک یا بیمارستان علاوه بر برآورده ساختن انتظارات سهام داران و دستگاه های نظارتی برای بهبود و اصلاح عملکرد سیستم بانک و بیمارستان نیز به کار می رود
دسته سوم ) خروجی ها برای خود سیستم با سایر سیستم ها قابل استفاده نیستند بلکه ضایعات دور ریختنی هستند که وارد سیستم کلوژیکی می شوند . همه سیستم ها برای به حد اقل رساندن این نوع خروجی تلاش می کنند بطوری که کنترل ضایعات « خروجی های دسته سوم » یکی از مهمترین معضلات سازمانهای معاصر است .

4 – بازخور کنترلی
باز خور ها ، ابزار ایجاد تعادل در سیستم هستند در مباحث قبلی مطالب مختصری در مورد « ورودی های بازخور » ذکر شد . در مباحث بعدی نیز تحت عنوان « حلقه بازخود » و « باز خود به مثابه ابزاری برای کنترل » توضیحات بیشتر در این مورد ارائه خواهد شد
1- روابط :
مسیر های ارتباطی عناصر سیستم با یکدیگر را « روابط » می نامند . در سیستم های پیچیده ای که هر عنصر آن یک خرده سیستم ( یا یک جعبه سیاه ) به شمار می آید اصطلاح « روابط » بر مسیر های پیوند دهنده خرده سیستم ها دلالت دارد . با وجود آنکه هر رابطه وضعیتی مختص به فرد دارد همه روابط را باید دریافت عناصر سیستم بررسی کرد . بطور کلی روابط موجود در عالم در عالم واقع در یکی از سه طبقه ذیل جا می گیرند :
1 – روابط حیاتی ( منطقی )
2 – روابط هم نیروزایی ( مراوده ای )
3 – روابط مکرر لازم (موقتی یا زمانی )
1 - روابط حیاتی : روابط حیاتی ، رابطه ای است که در هر صورت قطع آن سیستم های وابسته به آن نمی توانند به وظیفه خود عمل کنند در برخی از روابط حیاطی یک سویه است و در یک جهت جریان دارد . در حالی که در برخی از موارد روابط حیاتی دو سویه است .

2- رابطه هم نیروزایی :
وجود رابطه « هم نیروزایی » از حیث کارکردی ضرورت ندارد ولی به طور قابل ملاحظه ای بر عملکرد سیستم تأثیر می گذارد . « هم نیروزایی » در اثر «اقدام تلفیقی » ایجاد می شود . در متون علمی سیستم ها واژه هم نیروزایی بر مفهومی متفاوت با « تلاش و مبتنی بر همکاری و تشریک مساعی مجموعه ای از خرده سیستم های نیمه مستقل خروجی و بازده کل سیستم پیش از جمع بازده و خروجیهای هر یک از خرده سیستم ها در حالتی که تنها و مستقل عمل می کنند خواهد شد ، یعنی هم نیروزایی موجب می شود که حاصل تلاش جمعی دو عنصر که برای مثال هر یک « دو واحد » نیرو دارند ، چیزی بیش از « چهار » شود .

3 – رابطه مکرر لازم ( موقتی یا زمانی ( :
رابطه مکرر و لازم بر تکرار یا بیان دیگری از روابط موجود دلالت دارد هدف از این تکرار افزایش قابلیت اعتماد ( اعتبار ) است ، زیرا وجود رابطه مکرر و لازم احتمال عدم توقف سیستم واستمرارفعالیت آن را افزایش می دهد . هر چه اینگونه روابط بیشتر باشند ، قابلیت اعتماد به سیستم بیشتر می شود ، ولی هزینه آن نیز افزایش می یابد . از روابط مکرر و لازم ( یا روابط پشتیبانی ) به وفور در مجموعه ساخته های بشری استفاده می شود ، برای مثال : در طراحی سیستم های مورد استفاده فضا پیما ها ، ماهواره ها و هواپیما ها با استفاده از روابط مکرر تلاش می شود که عملیات سیستم در همه وضعیت های بالقوه ایمن گردد .
ویژگیها :
خواص اجزاء ، عناصر و روابط درون هر سیستم را ویژگی های آن سیستم می نامند . شناخت ، مشاهده و معرفی هر چیز به منزله یک فراگرد ، با استفاده از ویژگی های آن صورت می پذیرد .
برای نمونه : یک ماشین اداری ویژگی های ذیل را دارا است :
1 – شماره معین
2 – ظرفیت ورودی و خروجی معین بر حسب واحد زمان
3 – جریان الکتریکی معین
4 – عمر فنی
5 – عمر مفید
به این ترتیب می توان ویژگی ها را به دو نوع کلی تقسیم کرد :
الف : ویژگی های توصیفی
ب : ویژگی های همراه
ویژگی های توصیفی ) ویژگی هایی هستند که یک موجودیت را آنگونه که هست توصیف می کنند ،
ویژگی های همراه ویژگی هایی هستند که مطرح شدن یا نشدن آنها ، برای توصیف جنبه های مورد نظر از یک موجودیت ، تفاوتی نداشته باشند .

پویایی سیستم :
سیستم ها در طی زمان تغییر می کنند این تغییرات بر پویایی سیستم دلالت دارند . از این رو سیستم های تغییر پذیر را سیستم های پویا نیز می نامند . در واقع روابطی که دو سویه عناصر و همچنین تعامل عـناصر با محیط را باری تعقیب هـدف های سیستم مـحدود
می سازند ، منشأ اصلی این تغییرات هستند .

مرز سیستم :
هرگاه پرسشی در مورد « محیط سیستم » مطرح می شود در پاسخ سخن از « مرز سیستم » به میان می آید. مرز سیستم، مجموعه ای از عناصر سیستم است که علاوه بر عناصر درونی سیستم عوامل دیگری نیز در تعیین رفتار آن مؤثر هستند . در واقع رفتار عناصر درون سیستم تحت تأثیر محدودیت هایی است که از سوی همسایگان سیستم « در محیط خارجی » به آنها تحمیل می شود . البته عناصر در طول مرزهای سیستم نیز نسبت به محیط خارجی واکنش نشان می دهند .
مرز سیستم ) بر اساس یک تعریف عملیاتی،عبارت است از« یک خط منحنی بسته که دور متغیرهائی معین قرار دارد و در محدوده ای که از پیرامون این خط تا درون آن امتداد می یابد ، میزان ارتباط و تبادل انرژی کمتر است » . در واقع « مرز» جداکننده سیستم از محیط آن است . البته معمولاً مرز سیستم را به صورت قراردادی ؛ بر اساس متغیر های مورد نظر ترسیم می کنند . تحلیلگر می تواند مرز سیستم را به گونه ای تنظیم کند تا معلوم شود که « آیا متغیر های معیین موجود در محیط یا خارج از آن ، به سیستم مربوط یا
نا مربوط هستند ».
رفتار عناصر خارجی دور از « مرز سیستم » نیز تا حدودی قابل پیش بینی است : ولی این پیش بینی به میزان آگاهی سیستم از آن عناصر بستگی دارد . رفتار یک سیستم بر خلاف رفتار عناصر آن تا حدی به محیط وابسته است . زیرا محیط همواره با سیستم سر و کار دارد و اغلب بر آن اثر می گذارد البته سیستم نیز به یکی از سه شیوه ذیل در برابر محیط عکس والعمل نشان می دهد :
1 – تعمیر و نگهداری
2 – دفاع
3 – رشد


مقاله تحلیل داده ها

برای تعیین رقمهای با معنا ، رقمها را از سمت چپ به راست می شماریم صفرهایی ک قبل از اولین رقم سمت چپ نوشته می شوندجزء رقمهای با معنا به حساب نمی آیند
دسته بندی ریاضی
بازدید ها 52
فرمت فایل doc
حجم فایل 267 کیلو بایت
تعداد صفحات فایل 35
مقاله تحلیل داده ها

فروشنده فایل

کد کاربری 1024
کاربر

تحلیل داده ها


1- ارقام با معنی:
برای تعیین رقمهای با معنا ، رقمها را از سمت چپ به راست می شماریم. صفرهایی ک قبل از اولین رقم سمت چپ نوشته می شوندجزء رقمهای با معنا به حساب نمی آیند این صفرها به هنگام تبدیل یکاها ظاهر می شوند و تبدیل یکاها نباید تعداد رقمهای با معنا را تغییر دهد
12/6 : سه رقم بامعنی
0010306/0 :پنج رقم با معنی که اولین رقم با معنی یک است.صفرهای قبل از یک با معنی نیستند
20/1 : سه رقم با معنی در صورتیکه صفر با معنی نباشد عدد باید به صورت2/1 نوشته شود
38500 : سه رقم با معنی، چیزی برای اینکه نشان دهد صفرها با معنی هستند یا نه مشخص نیست می توان این ابهام را با نوشتن بصورتهای زیر برطرف کرد:
: هیچکدام از صفرها با معنی نیستند
: یکی از صفرها با معنی است
:هر دو صفر با معنی است
m 040/0 = Cm0 /4=mm40 که هر سه دارای سه رقم با معنی هستند.
2- گرد کردن اعداد:
اگر بخواهیم ارقام عدد 3563342/2 را به دو رقم کاهش دهیم، این عمل را گرد کردن عدد می نامند. برای این منظور باید به رقم سوم توجه کنیم بدین صورت که اگر قم سوم بزرگتر یا مساوی5 باشد رقم دوم به طرف بالا گرد می شود و اگر رقم سوم کوچکتر از 5 باشد رقم دوم به حال خود گذاشته می شود
4/1 3563342/2
62700 62654
108/0 10759/0
3- محاسبات و ارقام با معنی:
می خواهیم سطح مقطع یک استوانه به قطر6/7 را بدست آوریم:

اشکال کار: اگر دقت کنیم محاسبات تا 10 رقم با معنی است اگر از کامپیوتری تا 100 رقم استفاده می کردیم چه؟ در صورتیکه قطر کره تا دو رقم با معنی است بنابراین در اینگونه موارد به نکات زیر توجه می کنیم:
توجه: اگر مجبورید محاسبه ای را که در آن خطای مقادیر مشخص نیست انجام دهید و می بایستی فقط با ارقام با معنی کار کنید به نکات زیر توجه کنید:
الف ) زمانی که اعداد را در هم ضرب و یا بر هم تقسیم می کنید: عددی که با کمترین ارقام با معنی در محاسبه است را شناسایی کنید به حاصل محاسبه همین تعداد ارقام با معنی نسبت دهید
چون 7/3 با دو رقم با معنی است


ب ) زمانی که اعداد را با هم جمع و یا از هم کم می کنید: تعداد ارقام اعشاری عدد حاصل از محاسبه را برابر تعداد کمترین ارقام اعشاری اعداد شرکت داده شده در محاسبه گرد کنید
کمترین اعشار مربوط به1/13 است


مثال: شعاع یک کره5/13 سانتیمتر برآورد شده است. حجم ایمن کره را بدست آورید؟
جواب:
مثال: چگالی کرهای به جرم44/0 گرم و قطر76/4 میلی متر را بدست آورید؟

4- متغیرهای وابسته و مستقل:
به کمیتی که مقدار آن را می توانیم تنظیم نمائیم و یا در طول آزمایش به دلخواه تغییر داده می شود، متغیر مستقل گفته می شود و آنرا به عنوان مختصهx در نمودار می گیریم.
به کمیتی که بر اثر تغییر در متغیر مستقل پیدا می کند، متغیر وابسته گفته می شود و به عنوان مختصهy در نمودار گرفته می شود.
مثلا در آزمایش انبساط طولی میله در اثر حرارت دما متغیر مستقل و طول میله متغیر وابسته می باشد

5- خطا :
تمام اندازه گیریها متاثر از خطای آزمایش هستند.منطور این است که اگر مجبور با انجام اندازه گیریهای پیایی یک کمیت بخوصوص باشیم، به احتمال زیاد به تغییراتی در مقادیر مشاهده شده برخورد خواهیم کرد. گرچه امکان دارد بتوانیم مقدار خطا را با بهبود روش آزمایش و یا بکارگیری روشهای آماری کاهش دهیم ولی هرگز نمی توانیم آن را حذف کنیم.
1-5- خطای دقت وسایل اندازه گیری :
هیچ وسیله اندازه گیری وجود ندارد که بتواند کمیتی را با دقت بینهایت اندازه گیری نماید.بنابراین نادیده گرفتن خطای وسایل اندازه گیری در آزمایش اجتناب ناپذیر است.
اگر اندازه کمیتی که اندازه می گیریم با گذر زمان تغییر نکند، مقدار خطا را نصف کوچکترین درجه بندی آن وسیله در نظر می گیریم.
مثال:
متر کوچکترین درجه mm1 = مقدار خطا
پس اندازه گیریی mm54 را بصورت بیان می کنیم
دما سنج کوچکترین درجه ºC2 = مقدار خطا
پس اندازه گیریی ºC60 را بصورت بیان می کنیم
2-5- خطای خواندن مقدار اندازه گیری:
3-5- خطای درجه بندی وسایل اندازه گیری:
تعریف خطای مطلق: اگر خطا را با همان یکای کمیت اندازه گیری شده بیان نمائیم، به این خطا، خطای مطلق کمیت اندازه گیری گفته می شود
تعریف خطای نسبی: اگر خطا بصورت کسری باشد، به این کسر، خطای نسبی مقدار کمیت اندازه گیری شده گفته می شود
4-5- ترکیب خطاها :
ممکن است در آزمایشی نیاز به یافت چند کمیت، که باید آنها را بعداُ در معادله ای وارد کنیم، داشته باشیم برای مثال ممکن است جرم و حجم جسمی را اندازه بگیریم و سپس نیاز به محاسبه چگالی داشته باشم، که با رابطه زیر تعریف می شود: سوال اینجاست که چه ترکیبی از خطاهای مقادیر m وV ] اندازه خطای را بدست می دهد. بدین منظور سه روش زیر ارائه داده می شود:
الف) روش اول: این روش را با دومثال زیر توضیح می دهیم:
مثال1: قطر سیمی با مقطع دایره ای برابر است با: مطلوب است اندازه سطح سیم و مقدار خطای آن؟
جواب:

مثال2: در یک آزمایش الکتریکی، جریان جاری شده در یک مقاومت برابر با و ولتاژ دو سر مقاومت اندازه گیری شد.اندازه مقاومت و مقدار خطای مقاومت را بدست آورید؟