دسته بندی | ریاضی |
بازدید ها | 46 |
فرمت فایل | doc |
حجم فایل | 89 کیلو بایت |
تعداد صفحات فایل | 26 |
کارایی الگوریتم مسیریابی شکسته شده برای شبکه های چندبخشی سه طبقه
چکیده:
این مقاله شبکه های سویچنگ سه طبقه clos را از نظر احتمال bloking برای ترافیک تصادفی در ارتباطات چند بخشی بررسی می کند حتی چنانچه سویچ های ورودی توانایی چند بخشی را نداشته باشند و نیاز داشته باشند به تعداد زیاد وغیرمجازی از سویچهای میانی برای فراهم کردن این مسیرهایی که پلاک نشوند مطابق درخواستها مدل احتمالی این دید را به ما میدهد که احتمال پلاک شدن در آن بسیار کاهش یافته و تقریبا به صفر می رسد در ضمن اینکه تعداد سویچهای میانی بسیار کمتر از تعداد تئوریک آن است.
در این مقاله یک الگوریتم مسیریابی شکسته شده را فعال پلاک شدن در آن معدنی شده است برای اینکه قابلیت مسیریابی با fanout بالا را برآورده کند. ما همچنین مدل تحلیلی را بوسیله شبه سازی کردن شبکه بر روی
فهرست اصطلاحات: چند بخشی، ارزیابی عملکرد، مدل احتمالی، شبکه های سویچینگ
معدنی:
شبکه های clos بخاطر انعطاف پذیری وساده بود نشان بطور گسترده در شبکه های تلفن، ارتباطات Data و سیستمهای محاسبه ای موازی بکار برده می شوند. کارایی خیلی از برنامه های کاربردی بوسیله یک عمل چند بخشی موثر که پیغامی را به چند دریافت کننده بصورت همزمان می فرستد بهتر می شود. به عنوان مثال در سیستمهای چند پردازنده ای یک متغیر همزمان سازی قبل از آنکه پرازنده ا بکارشان ادامه دهند باید فرستاده شود. همانطوریکه برنامه های کاربردی به خدمات چند بخشی موثر که توسعه پیدا کرده نیاز دارند در طی چند سال اخیر حتی در شبکه های با دامنه عمومی طراحی سیستمهای سویچینگ که بطور موثر بادرخواستهای چندبخشی سروکار دارد نیز اهمیت پیدا کرده است.
تلاشهای زیادی برای سازگار کردن شبکه های clos (که در ابتدا برای ارتباطات نقطه به نقطه توسعه پیدا کرده بودند) برای آنکه با ارتباطات چند بخشی وفق پیدا کنند انجام شده است.شبکه clos چند بخشی با قابلیت پلاک نشدن هنوز بسیار گران در نظر گرفته میشوند برای همین کارایی آن را روی پیکربندی های کوچکتر از معمول در نظر نمی گیرند.
یک شبکه clos سه طبقه بوسیله نشان داده می شود که سویچهای طبقه ورودی m سویچهای لایه میانی و سویچهای لایه خروجی است، هر کدام از سویچهای لایه ورودی تاپورت ورودی خارجی دارند و به هر کدام از سویچهای لایه میانی اتصال دارد بنابراین ارتباط بین طبقه ورودی وطبقه میانی وجود دارد . هر سویچ طبقه خروجی عدد پورت خروجی دارد و به هر کدام از سویچها یک درخواست اتصال نشان داده میشود به شکل c(x,y) که در آن x یک سویچ ورودی و را یک مجموعه مقصد از سویچهای خروجی است.
چندی /1 درجه fanout درخواست نامیده می شود. به یک مجموعه از درخواستهای اتصال سازگار گفته می شود اگر جمع تصادفات هر کدام از سویچهای ورودی از بزرگتر نباشد وجمع تصادفات کدام از سویچهای خروجی بزرگتر از نباشد.
یک درخواست با شبکه موجود سازگار است اگر تمام درخواستها و همچنین درخواست جدید سازگار باشد در شکل (1) برای نمونه با پیکربندی موجود سازگار است ولی سازگار نیست جون سویچ خروجی شماره 1 درخواست را قبلا حمل کرده است. یک خط سیر برای درخواست اتصال جدید یک درخت است که سویچ ورودی x را به مجموعه /1 تا سویچ خروجی از میان سویچهای میانی متصل می کند. یک درخواست اتصال قابل هدایت است اگر یک مسیر روی تمامی اتصالات بین طبقه ای پیدا کند وبتواند ردر انحصار قرار دهد.
ماسول و جدول برای اولین بار nonblacking محض /1 وشبکه clos سه طبقه قابل بازآیی را برای اتصالات چندگانه که اتصالات بین هر تعداد از سویچهای ورودی وسویچیهای خروجی بوجود می آورد را معدنی کردند.
هرانگ قابلیت بازایی وخواص nonblaking شبکه های clos چند بخشی را تحت شرایط مختلف ومحدودیت های fonout مورد بررسی قرار داد
یانگ وماسول اولین تحلیل خود را که اجازه می داد سویچهای هر طبقه برای کاهش نیازهای سخت افزاری همانند سازی کند را انجام دادند آنها ثابت کردند که اگر تعداد سویچهای میانی o(nlogr/logloyr) باشد آنگاه شبکه nonblacking بوجود آمده است که تمام درخواستها از حداکثر k عدد سویچ میانی استفاده می کند که k نیز ثابت می باشد. علاوه بر مطالعات شبکه های clos چندبخشی nonblamking چندین تلاش رویکرد برای تعیین رفتاری blacking شبکه های swiching برای ارتباطات نقطه نقطه وجود داشت.
این تحقیق مدلهای احتمالی را را که بصورت نزدیکی رفتار شبکه های سویچینگ سه طبقه ای را تخمین می زند را تامین می کند.
برای ارتباطات چند بخشی هرانگ ولین یک مدل blocking از درخواستهای چند پخشی قابل بازآرایی را در شبکه clos نقطه به نقطه nonblocking با فرمول c(n,r,2n-1) پیشنهاد کردند. یانگ ووانگ رفتار blaocking درخواستهای چند پخشی را روی شبکه clos بوسیله بسط دادن مدل بررسی کردند
دسته بندی | ریاضی |
بازدید ها | 50 |
فرمت فایل | doc |
حجم فایل | 494 کیلو بایت |
تعداد صفحات فایل | 18 |
عدد طلایی
دنیای اعداد بسیار زیباست و ما می توانیم در آن شگفتی های بسیاری را بیابیم. در میان برخی از آنها اهمیت فوق العاده ای دارند، یکی از این اعداد که سابقه ی آشنایی بشر با آن به هزاران سال پیش از میلاد می رسد، عددی است به نام نسبت طلایی یا Golden Ratio.
اگر پاره خطی را در نظر بگیریم و فرض کنیم که آنرا بگونه ای تقسیم کنیم که نسبت بزرگ به کوچک معادل کل پاره خط به قسمت بزرگ باشد، اگر معادله ساده یعنی را حل کنیم. ( کافی است به جای b عدد یک قرار دهیم، بعد a را بدست آوریم)، به نسبتی معدل تقریباً 1/61803399 یا 1/618 خواهیم رسید. شاید باور کردنی نباشد، اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند، چرا که به نظر می رسد ذهن انسان با این نسبت انس دارد و راحت تر آن را می پذیرد.
این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود، بلکه در طبیعت نیز کاربردهای بسیاری دارد.
به نسبت بین خط های صورت این تصویرها نسبت طلایی گفته می شود.
اهرام مصر
یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است.
مجموعه اهرام GIZA در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد، یکی از شاهکارهای بشری است، در آن نسبت طلایی بکار رفته است. به این شکل نگاه کنید که در آن بزرگترین هرم از مجموعه ی هرم GIZA خیلی ساده کشیده شده است.
مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معرف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقاً 1/61804 میباشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد، یعنی چیزی حدود یک صد هزارم . حال توجه شما را به این نکته جلب می کنیم که اگر معامله فیثاغورث را برای این مثلث قائم الزاویه بنویسیم به معادله ای مانند خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. معمولاً عدد طلایی را با نمایش می دهند.
طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدوداً معادل 440 متر می باشد، بنابریان نسبت 356 بر 320 معادل نیم ضلع مربع، برابر با عدد 1/618 خواهد شد.
کپلر ( Gohannes Kepler 1571-1630)
منجم معروف نیز علاقه ی بسیاری به نسبت طلایی داشت، به گونه ای که در یکی از کتاب های خود اینگونه نوشت: "هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه ی فیثاغورث و دومی رابطه ی تقسیم یک پاره
خط به نسبت طلایی می باشد. اولین گنج را به طلا و دومی را به جواهر تشبیه کرد."
تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد.
آشنایی با سری فیبونانچی
باورکردنی نیست، اما در سال 1202 لئونارد فیبونانچی توانست به یک سری از اعداد دست پیدا کند، که بعدها به عنوان پایه برای بسیاری از رابطه های فیزیک و ریاضی استفاده شد، کافی است از عدد صفر و یک شروع کنید، آنها را کنار هم بگذارید و عدد بعدی را از جمع کردن دو عدد قبل بدست آورید، به سادگی به این رشته از اعداد خواهید رسید:
البته برخی از ریاضی دانان عدد صفر را جزو رشته فیبونانچی نمی دانند و یا حداقل آن را جمله ی صفرم سری می دانند، نکته ای که تعجب برانگیز است آنکه اگر از عدد سوم نسبت اعداد این سری را به عدد قبلی حساب کنیم خواهیم داشت:
1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34, 89/55, 144/89.000
و یا :
1, 2, 1.5, 1,666, 1.6, 1,625, 1.6153, 1.6190, 1.6176, 1.6181, 1.6179
بله بنظر می رسد که این رشته به سمت همان عدد طلایی معروف میل میکند. بگونه ای که اگر نرخ عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد 1.618033988749895 می رسیم که با تقریب 14 رقم اعشار نسبت طلایی را نشان می دهد.
بعدها محاسبات و استدلال های ریاضی نشان داد که این سری همگرا به سمت نسبت طلایی می باشد و جمله عمومی آنرا با بتقریب می توان اینگونه نمایش داد :
دسته بندی | ریاضی |
بازدید ها | 57 |
فرمت فایل | doc |
حجم فایل | 77 کیلو بایت |
تعداد صفحات فایل | 29 |
ریاضیات گسسته
مقدمه:
تاریخچه ریاضیات گسسته
پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.
معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشکار می شود.
ریاضیات گسسته مقدماتی متنی فشرده برابر یک دوره ریاضیات گسسته در سطحی مقدماتی برای دانشجویان کارشناسی علوم کامپیوتر و ریاضیات است. مولفه های اساسی برنامه کار ریا ضیات گسسته در سطحی مقد ماتی عبارتند از : ترکیبات نظریه گرا فها همراه با کار بردهایی در چند مسئاله استاندارد بهینه سازی شبکه ها، الگوریتمهایی برای حل این مسائل مهم اتحادیه سازندگان ماشینهای محاسبه و مهم کمیته برنامه ریزی یرای کارشناسی ریا ضی بر نقش حیاتی یک دوره درسی روشهای گسسته در سطح کارشناسی که دانشجویان را به حیطه ریاضیات ترکیباتی و ساختارهای جبری و منطقی وارد کند و روی ارتباط متقابل علوم کامپیوتر و ریاضیات تأکید داشته باشد صحه گذاشته اند.
جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستانی
در جریان تغییر نظام آموزش دوره های کارشناسی ریاضی در سالهای اخیر در دانشگاهها و موسسات آموزش عالی شاهد بودیم که درسهای جدید به تنا سب گرایشهای این رشته جایگزین درسهایی از نظام قبلی شدند. درس ریا ضیات گسسته نیز به ارزش 4 واحد درسی در این راستا بعنوان یکی از واحدهای پایه همه گرایشهای دوره کارشناسی ریاضی در نظر گرفته شده است. در کتابهای درسی ریا ضی نظام جدید دبیرستان نیز شاهد گنجاندن مفاهیم پایه ای مربوط به مباحث مقدماتی ریاضیات گسسته مانند نظریه گراف و دنباله ها و آمار و احتمال و ... می باشیم.
همچنین در دوره پیش دانشگاهی نیز درسی جداگانه تحت عنوان ریاضیات گسسته در نظر گرفته شده است. از آنجا که این شاخه از ریاضی نیاز مند بحث و تبادل نظر از لحاظ آموزشی و تعیین جایگاه و ارتباط آن با سایر شاخه ها و موضوعات ریاضی می باشد.
مطالبی که در این قسمت از بحث طرح خواهد شد بیشتر بر اساس مقاله ای است که تحت عنوان »آموزش ریاضی گسسته در دوره دبیرستان« توسط پروفسور آ.کاتلین
در مجلة بین المللی ریاضیات، علم و تکنولوژی 1990 درج شده است.
» انقلاب کامپیوتری، ریاضیات گسسته را همانند حساب دیفرانسیل و انتگرال برای علم و تکنولوژی ضروری ساخته است.«
محتوای کلی ریاضیات گسسته
محتوای دقیق یک دوره ریاضیات گسسته هنوز تا حدودی به طور مبهم باقیمانده است، زیرا هم کتابهایی که تاکنون در این زمینه به رشته تحریر در آمده و هم برنامه های درسی که در این مورد از سوی برنامه ریزان مباحث درسی ریاضی تهیه وتنظیم می شود، دقیقاَ نتوانسته اند موضوعات و قلمرو مباحث این درس را مشخص نمایند. موضوعاتی از قبیل نظریه اعداد و آمار و احتمالات و جبر خطی آنالیز عددی و مباحسات و برنامه سازیهای کامپیوتری ضمن اینکه در ریاضیات پیوسته جای پای محکمی دارند، در ریاضیات گسسته نیز خودنمایی و شکوفای روز افزون دارند. با این حال می توان گفت که ریاضیات گسسته شامل مباحثی است که مراحل مربوط به تغییرات گسسته و کمیتهای گسسته را توصیف می کند، در مقابل کالکوس که مراحل تغییرات به طور پیوسته را دنبال می کند پس به طور دقیق می توان گفت که ریاضیات گسسته کالکوس( حسابان) نیست.
به طور کلی یک دوره ریاضیات گسسته را می توان شامل عناوین زیر دانست:
منطق راضی و نظریه مجموعه ها ، ساختار های جبری از قبیل مباحث مربوط به گروهها و حلقه ها و میدانها و کواتریونها، شببکه ها جبر یون، نظریه گراف، روشهای ترکیبات و شمارش، نظریه اعداد محاسبات و الگوریتمهای عددی و تجزیه و تحلیل آنها، استقرار و روابط بازگشتی معادلات تفاضلی،آمار و احتمال با فضاهای نمونه ای گسسته.
تفاوت ریاضیات گسسته و حساب دیفرانسیل و انتگرال ( ریاضیات پیوسته)
در اساسی ترین سطح، مدلی برای بیان تفاوت بین ریاضیات گسسته و ریاضیات پیوسته ( یعنی حساب دیفرانسیل و انتگرال و شاخه هایی از آنا لیز که به حساب دیفرانسیل و انتگرال وابسته اند) تفاوت بین اعداد صحیح و اعداد حقیقی است. اعداد حقیقی، پایه همه ریا ضیاتی هستند که مانند حساب دیفرانسیل و انتگرال با خواص توابع پیوسته سر و کار دارند. در حالیکه ریاضیات گسسته بیشتر با توابعی سر و کار دارند که بر مجموعه نقاط گسسته تعریف شده اند( مثل دنباله ها) واز بسیاری جنبه ها به طور کامل با ساختمان پرشکوه آنالیز که بر پایه حساب دیفرانسیل بنا شده است و به طور عمده به توابع پیوسته می پردازد، تفاوت دارد. می دانیم که سیستم های فیزیکی از تعداد زیادی ذرات گسسته – اتمها و مولکولها – تشکیل شده است، در عمل پیوسته فرض کردن ماده فرض بسیار مناسب و دقیقی است. این سبب می شوند که اکثر پدیده ها ی طبیعی سیستمهای فیزیکی که از طریق حساب دیفرانسیل و انتگرال مدل سازی می شوند نوعاَ به صورت معادلات دیفرانسیل درآیند. این عملکرد آنچنان موفقیت شگفت انگیزی داشته است ک نتایج حاصل از آن تقریباَبرای همه مقاصد و اهداف ذاتاَ دقیق اند و موفقیت مهندسی وصنعت در قرنهای اخیر در سراسز دنیا مرهون این مدل سازی زیبا و دقیق و کار بردی ریاضی است، خصوصاَ از زمانی که پیدایش حسابگرهای رقمی و سپس کامپیوترها امکان بررسی و حل عددی معادلات دیفرانسیل و دیگر معادلات را فراهم نمودند. این آغاز شکوفایی آنالیز عددی بود نمونه متعارف از مسائلی که با استفاده از تکنیکهای آنالیز عددی حل می شوند این است که فرمول بندی یک مساله فیزیکی را با استفاده از حساب دیفرانسیل و انتگرال در نظر بگیریم و سپس آن را به شکل گسسته تبدیل کنیم تا با روشهای عددی قابل حل باشد. چنانچه در نمودار سیکلی مدل سازی ریاضی برای مسائل فیزیکی بیان گردید مرحله نهائی این پروژه زمانی قابل استفاده برای مسائل فیزیکی خواهد بود که جواب یا پیش بینی حاصلها از الگوی ریاضی ارزش عملی دانسته باشد و این امر جز به وسیله آنالیز عددی و محاسبات عددی مربوط به آن و تجزیه تحلیل خطاهای وارده و استفادهاز اصل دقت متغیر در روشهای ریاضی امکان پذری ننخواهد بود. از طزفی نیاز به ریاضیات گسسته، محدود به آنالیز عددی میشد نمی توانستیم ادعا کنیم که چنین ریاضیاتی نقش مقایسه کردنی با حساب دیفرانسیل و انتگرال دارد. آنالیز عددی با وجود کار بردهای وسیع، آن موضوعی تخصصی است نمی تواند تأثیر چشمکیری بر روند دآموزشی ریاضیات بگذارد هر چند آنالیز عددی مهمترین محل تلاقی ریاضیات پیوسته گسسته است امروزه تنها یک جزء کوچک از کار بردهای ریاضیات گسسته را دربرمیگیرد.
فهرست مطالب
- مقدمه
- جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان 2
- محتوای کلی ریا ضیات گسسته 3
- تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال 4
- مرور تاریخی مباحث مهم ریاضیات گسسته 8
- مفهوم جاگشت 8
- اولین فن حدس زدن 8
- دیریکله 9
- تاریخچه اصل شمول و عدم شمول 9
- نظریه گراف 10
- مسئله پل کونیگسبرگ 10
- طریقه نمایش گراف 11
- گراف هامیلتونی 12
- رابطه های بازگشتی و مبادلات تفاضلی 19
- نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی 25
- منابع 28
دسته بندی | ریاضی |
بازدید ها | 26 |
فرمت فایل | doc |
حجم فایل | 186 کیلو بایت |
تعداد صفحات فایل | 38 |
ماتریس
مقدمه :
شاید یکی از کاربردی ترین مفاهیم و مباحث ریاضی ، مبحث مربوط به ماتریس است که از آن به عنوان ابزاری قوی در مباحث دیگر ریاضیات و بخصوص در فیزیک کوانتم و علومی چون آمار ، حسابداری و ........ استفاده می شود . امروزه ماتریس ها یکی از ابزارهای اساسی محاسبات علمی ریاضیات به حساب می روند و در واقع ، نقش امروز ماتریس ها در ریاضیات و پیشبرد آن ، مانند نقش دیروز اعداد است . ریاضیات کاربردی ، در تمام شاخه ها ، نیاز مبرم به ماتریس دارد ، به خصوص که در بیش تر موارد حل مسائل عملی به نوعی با حل دستگاه های معادلات یا نامعادلات پیوند می خورد که حل چنین دستگاه هایی با ماتریس ها ارتباط تنگاتنگ دارد . ا زاین ور ، این مبحث حتی در سطح دبیرستان نیز از اهمیت ویژه ای برخوردار است ، به طوری که هم در کتاب درسی ریاضیات سال دوم ، هم در هندسه ی تحلیلی و جبر خطی دوره ی پیش دانشگاهی و هم در کتاب های ریاضی عمومی رشته های مهندسی از آن استفاده شده است . لذا ، با مطالعه و یادگیری مفاهیم مربوط به ماتریس ها و کاربرد آن ها ، یکی از جالب ترین و در عین حال ، مفید ترین موضوعات ریاضی بررسی خواهد شد .
تعریف ماتریس : بر اساس تعریفی که اولین بار یک ریاضیدان انگلیسی به نام «کیلی» برای ماتریس ارائه داد ، «ماتریس ، آرایشی از اعداد حقیقی است که روی سطرها و ستون های منظم قرار گرفته و با دو کروشه محصور شده باشند .» هر یک از اعداد حقیقی موجود در یک ماتریس را یک درایه یا عنصر آن ماتریس می نامند .
هر یک از آرایش های زیر یک ماتریس است : (ماتریس ها را با حروف بزرگ نشان می دهیم . )
هر درایه در یک ماتریس ، در تقاطع یک سطر با یک ستون قرار دارد ، مثلاً در ماتریس A ، عدد 2 در تقاطع سطر اول با ستون دوم قرار دارد و یا در ماتریس B ، عدد در تقاطع سطر دوم و ستون دوم واقع است که در واقع ، جایگاه هر درایه در هر ماتریس با همین تقاطع ها مشخص و برای هر درایه در هر ماتریس دو اندیس در نظر گرفته می شود که اولی سطر و دومی ستون مربوط به آن درایه را معلوم می کند . برای مثال ، وقتی می نویسیم یعنی درایه ی روی سطر دوم و ستون سوم و برای هر ماتریس نیز دو اندیس در نظر گرفته می شود که اندیس اول ( از چپ ) تعداد سطرها و اندیس دوم تعداد ستون های آن ماتریس را نشان می دهد . برای مثال اگر B ماتریسی با دو سطر و سه ستون باشد ، می نویسیم و می گوییم « B ماتریسی 2 در 3 » یا «از مرتبه ی 2 در 3 » است ، و در حالت کلی اگر A ماتریسی باشد ، داریم :
دسته بندی | ریاضی |
بازدید ها | 18 |
فرمت فایل | doc |
حجم فایل | 107 کیلو بایت |
تعداد صفحات فایل | 40 |
روش های تکراری پیش فرض در مسائل گسسته خطی از منظر معکوس« بایسیان»
چکیده:
در این مقاله ما با مسائل گسسته خطی که با روشهای تکراری قابل حل می باشد از نظر آماری معکوس بایسیان روبرو خواهیم شد پس از بررسی اجمالی روش های تکراری عمده برای حل مسائل ناقص خطی و برخی نتایج آماری اولیه و روشهای آماری استراتژیهای ترسیمی را مورد تجزیه و تحلیل قرار خواهیم داد. نمونه های محاسبه شده رابط بین این دو را تشریح می کند.
کلمات کلیدی: حل های معکوس( امتحانی) فضای فرعی« کریلا» و روش معکوس« بایسیان»
پیش فرضها مسائل ناقص
(1) مقدمه
استفاده از روشهای تکراری برای حل سیستمهای خطی معادلات روشی انتخابی است هنگامی که ابعاد سیستم آنقدر بزرگ باشد که
فاکتورسازی ماتریس A را غیر عملی سازد یا هنگامی که ماتریس آن بطور صریح مجهول باشد و ما بآسانی بتوانیم حاصلضرب آن را با هر گونه بردار معلومی محاسبه کنیم. هنگامی که سیستم خطی در رابطه با گسستگی مسائل خطی ناقص سمت راست b اطلاعات و فرضیات را مورد بررسی قرار دهد، نقش مسائل متوالی در ماتریس A افزایش می یابد و بنابراین حل مسائل برای یافتن خطا در داده ها مهم و ضروری به نظر می رسد. بمنظور حفظ خطا در نشان دادن صورت b برخی از روشهای بدست آوردن مجهولات بایستی مشخص شود در زمینه روشهای معکوس بمنظور حل مجهولات بواسطه توقف کردن تکرار قبل از همگرایی در حل سیستم های خطی بهتر است به تکرار های ناقص رجوع شود. تجزیه و تحلیل کامل در ویژگی های معلوم کردن به روش CG در معادلات کامل هنگامی که می توان از معیارهای بازدارندگی مناسب استفاده کرد در بخش ] 10 [ قابل بحث می باشد.
در صورتیکهM ماتریس معکوس باشد، براساس ویژگی های طیفی MA همگرایی سریعترین برای روشهای حل تکراری ایجاد می کند. ماتریس M ماتریس شرطی سمت چپ برای سیستم خطی(1) نامیده می شود قابلیت امتحان ماتریس M نشان میدهد که سیستم های (1) و (2) راه حل یکسانی دارند انتخاب یک ماتریس شرطی مقدم M نشان می دهد که چنین ماتریسی نه تنها ویژگی های طیفی ماتریس A را تغییر می دهد بلکه بمنظور حل سیستم های خطی با مضروب ماتریس A بآسانی می توان آن را در کل بردار ضرب کرد. در حقیقت در هنگام حل سیستم 2 به روش تکرار لازم است ضرب ماتریس در بردار را در فرم مورد محاسبه قرار دهیم. سیستم خطی (1) با معادله زیر قابل جانشینی است.
(3)
ماتریس معکوس
در صورتی کهM ماتریس معکوس باشد در این مورد M ماتریس شرطی اولیه را ست نامیده می شود و از آنجائیکه هنگام حل سیستم خطی لازم است ضرب ماتریس در بردار را که بصورت نشان داده می شود محاسبه کنیم حل سیستم خطی با ضریب ماتریس A نیز ضروری به نظر می رسد یکی از شرایط برای روشهای حل تکراری در سیستم های خطی را می توان در بخش 19 مشاهده کرد زمانی که سیستم خطی از پراکندگی مسائل ناقص خطی ناشی می شود لازم و ضروری است که این مسائل را حل کرد در عوض تغییر مسیر از شتاب دهنده های همگرا به یک افزایش دهنده کیفیت در حل مسائل محاسبه شده به هیچ روش امکان پذیر نمی باشد. علاوه بر آن سمت و جهتی که معکوس ماتریس بکار می رود بسیار مهم است.در حل تکراری مسائل خطی یک شرط اولیه سمت راست مرتبط با داده های کاملاً منسجم و موجود در مورد حل در حالیکه شرایط لازم الاجرای سمت چپ داده هایی در مورد تمایز ویژگی های آماری ارائه می دهد در حالی که کاربرد این فرضیات در رابطه با روشهای تکراری در سیستم های خطی مشابه و مسائل خطی ناقص بر هم مرتبط است ساخت این پیش فرضیات مناسب کاملاً متغیر بوده و در موارد بعدی برای فهم اینکه چگونه این پیش فرضیات بر کیفیت حل مسائل اثر گذارنده مهم بنظر می رسد.
برخی انواع داده های قبلی در مورد حل ممکن است قابل تغیر به یک تغییرات مناسب در جهت حل های تکراری باشد بعنوان مثال داده هایی در مورد حد های بالایی و پائینی در حل اعداد صحیح بواسطه مراحل ترسیم سازی، پس از ترسیم روش تقریبی روش های تکراری با استفاده از روش های حل ترسیمی بعنوان یک سری حدسیات اولیه جدید آغاز می شود رجوع شود به] 3 [ فرایند ادامه می یابد تا یک معیاری برای توقف حاصل شود این امر باعث می شود روشهای مؤثر محاسباتی نسبت به مدل های استاندارد تأثیر بهتری داشته باشد.
این مقاله به صورت زیر تنظیم شده است در بخش 2 ما مختصراً برخی از تحقیقات در زمینه روشهای تکراری کریلا و را برای مسائل ناقس و گسسته خطی مورد بررسی قرار می دهیم بخس 3 یک بررسی اجمالی در مورد نتایج آماری مورد نیاز می باشد بخش 4 رابطه بین پیش فرضیات و مسائل معکوس آماری« بایسیان» را با اطلاعات آماری در زمینه حل و نقص را عنوان میکند بخش 5 چگونگی استفاده از استراتژیهای ترسیمی را باری فائق آمدن بر حدهای بالایی و پائینی در حل مسائل نشان میدهد. در بخش 6 ما دیدگاهی را مورد چگونگی انتخاب حدهای مناسب برای یک مجموعه مسائل خطی ناقص هنگامی که راه حل هایی برای حل حدها بخوبی شناخته نشده باشد و چگونگی فائق آمدن بر آن ها را با پیش فرضیات سمت راست مورد بررسی قرار می دهیم. رابطه بین پیش فرضیات سمت چپ و ویژگی های آماری در بخش 7 می آید بخش 8 نمونه های حل شده ای از عملکرد پیش فرض ها و استراتژی های ترسیمی را در بخشهای پیشین ارائه می دهد. نتایج و رئوس مطالب در بخش 9 موجود است.