دانلود مقاله-تحقیق-پروژه-کارآموزی

مرجع کامل خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

دانلود مقاله-تحقیق-پروژه-کارآموزی

مرجع کامل خرید و دانلود گزارش کار آموزی ، گزارشکار آزمایشگاه ، مقاله ، پروژه و پایان نامه های کلیه رشته های دانشگاهی

تحقیق بررسی انفجار انرژی

تحقیق بررسی انفجار انرژی در 54 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 2
فرمت فایل doc
حجم فایل 63 کیلو بایت
تعداد صفحات فایل 54
تحقیق بررسی انفجار انرژی

فروشنده فایل

کد کاربری 6017
کاربر

تحقیق بررسی انفجار انرژی در 54 صفحه ورد قابل ویرایش


مبانی تئوری انفجار:

1- مقدمه:

در طول حداقل 200 سال گذشته، کاربرد واژه انفجار متداول بوده است. در زمانهای قبل از آن این واژه به تجزیه[1] ناگهانی مواد و مخلوطهای انفجاری با صدای قابل توجهی نظیر «رعد» اطلاق شده است. این مطلب از دیرباز شناخته شده است که انفجار تجزیه سریع مقدار معینی ماده است که به محض رخداد یک ضربه یا گرمایش اصطکاکی اتفاق می‌افتد. بنابراین تجزیه این مواد در شرایط مناسب می‌تواند بصورت ساکت و آرام رخ دهد.

کلمه انفجار[2] از نظر فنی به معنی انبساط ماده به حجمی بزرگتر از حجم اولیه است. آزاد شدن ناگهان انرژی که لازمه این انبساط است. غالباً از طریق احتراق سریع، دتونیشن[3] (که در فارسی همان انفجار معنی می‌شود)، تخلیه الکتریکی با فرایندهای کاملاً مکانیکی صورت می‌گیرد. خاصیت متمایز کننده انفجار، همانا انبساط سریع ماده است. به نحویکه انتقال انرژی به محیط تقریباً بطور کامل توسط حرکت ماده (جرم) انجام می‌شود. در جدول زیر مقایسه‌ای بین چند فرآیند آزادسازی انرژی انجام شده است:




برای شعله تقریباً هیچ انتقال جرمی به اطراف رخ نمی دهد در حالیکه نیروی پیشرانش یک اسلحه قادر به راندن گلوله است و یک ماده منفجره قوی[4] هر چیز در تماس با خود را تغییر شکل داده و یا ویران می‌کند. قدرت منهدم کننده این مواد را «ضربه انفجار»[5] نامیده می‌شود که مستقیماً با حداکثر فشار تولید شده مرتبط است. توجه کنید که در جدول (بالا)، هیچگونه توصیفی از محل رخداد (تونیشن ماده منفجره قوی ارائه نشده است. این بدان معناست که فرایند دتونیشن از محدودیتهای فیزیکی مستقل است.

با توجه به مطالب بالا واضح است که دتونیشن تنها یکی از انواع حالات پدیده انفجار است بعبارت دیگر واژه دتونیشن تنها باید به فرآیندی اطلاق شود که در طی آن یک «موج شوک»[6] انتشار یابد.

متاسفانه بعلت قفرلفات مناسب فنی در زبان فارسی، دتونیشن به معنی عام انفجار ترجمه می‌شود و بنابراین در ادامه این مبحث برای پرهیز از اشتباه و رسا بودن مطلب همان واژه دتونیشن را به کار برده خواهد شد.

سرآغاز تحقیقات اخیر بر روی دتونیشن به سالهای 45-1940 م. که «زلدویچ» و «ون نیومان» هر یک به طور جداگانه مدل یک بعدی ساختار امواج دتونیشن را فرمولبندی کردند باز می‌گردد، گرچه یک مدل واقعی سه بعدی تا اواخر سال 1950 م به تاخیر افتاد.

2- پدیده دتونیشن:

دتونیشن یک واکنش شیمیائی «خود منتشر شونده»[7] است که در طی آن مواد منفجره اعم از مواد جامد، مایع، مخلوطهای گازی، در مدت زمان بسیار کوتاه در حد میکروثانیه. به محصولات گازی شکل داغ و پرفشار با دانسیته بالا و توانا برای انجام کار تبدیل می‌شود. فرض بگیرید قطعه‌ای از مواد منفجره، منفجر گردد. به نظر می‌رسد که همه آن در یک لحظه و بدون هیچ تاخیر زمانی نابود می‌گردد. البته در واقع دتونیشن از یک نقطه آغازین شروع شده و از میان ماده بطرف انتهای آن حرکت می‌کند. این عمل بخاطر آن آنی بنظر می‌رسد که سرعت رخداد آن بسیار بالاست.

از نظر تئوری دتونیشن ایده‌ال واکنشی است که در مدت زمان صفر (با سرعت بی‌نهایت) انجام شود. در اینحالت انرژی ناشی از انفجار فوراً آزاد می‌شود اصولاً زمان واکنش بسیار کوتاه یکی از ویژگیهای مواد منفجره است. هر چه این زمان کمتر باشد، انفجار قویتر خواهد بود. از نظر فیزیکی امکان ندارد که زمان انفجار صفر باشد. زیرا کلیه واکنشهای شیمیائی برای کامل شدن به زمان نیاز دارند.

پدیده دتونیشن با تقریبی عالی مستقل از شرایط خارجی است و با سرعتی که در شرایط پایدار[8] برای هر ترکیب، فشار و دمای ماده انفجاری اولیه ثابت است منتشر می‌شود. ثابت بودن سرعت انفجار، یکی از خصوصیات فیزیکی مهم برای هر ماده منفجره می‌باشد در اثر دتونیشن، فشار، دما و چگالی افزایش می‌یابند. این تغییرات در اثر تراکم محصولات انفجار حاصل می‌گردند.

پدیده‌ای که مستقل از زمان در یک چارچوب مرجع حرکت می‌کند. «موج» نامیده می‌شود و ناحیه واکنش دتونیشن، «موج دتونیشن»[9] یا موج انفجار نامیده می‌شود. در حالت پایدار این موج انفجار بصورت یک ناپیوستگی شدید فشاری که با سرعت بسیار زیاد و ثابت VD از میان مواد عبور می‌کند توصیف می‌شود واکنش شیمیائی در همسایگی نزدیک جبهه دتونیشن[10] است که باعث تشکیل موج انفجار می‌شود. این موج با سرعتی بین 1 و تا 9، بسته به طبیعت فیزیکی وشیمیائی ماده منفجره حرکت می‌کند. این سرعت را می‌توان با استفاده از قوانین ترموهیدرودینامیک تعیین نمود. عواملی که در سرعت انفجار نقش دارند عبارتند از: انرژی آزاد شده در فرآیند، نرخ آزاد شدن انرژی، چگالی ماده منفجره و ابعاد خرج انفجاری.

یک مدل ساده برای این پدیده مطابق شکل زیر از یک «جبهه شوک»[11] و بلافاصله بدنبال آن یک ناحیه انجام واکنش که در آن فشارهای بسیار بالا تولید می‌شود، تشکیل شده است. ضخامت ناحیه واکنش در انفجار ایده‌آل صفر است و هر چه انفجار بحالت ایده‌ال نزدیکتر باشد. ضخامت این ناحیه کمتر است. نقطه پایان این ناحیه، محل شروع ناحیه فشار دتونیشن[12] است.



مدل یک بعدی دتونیشن

فشار دتونیشن با رابطه زیر به سرعت دتونیشن و دانسیته مواد منفجره وابسته است:

(1)

که P مصرف فشار دتونیشن و P مصرف چگالی محصولات و P0 چگالی ماده منفجره است. بر اساس این فرض که چگالی محصولات دتونیشن بزرگتر از چگالی مواد منفجره اولیه است، یک رابطه کاربردی بصورت زیر استخراج می‌گردد.

(2)

از آنجا که زمان رخداد واکنش شیمیائی در یک فرآیند دتونیشن بسیار کوتاه است. انتشار و انبساط گازهای داغ حاصل در ناحیه واکنش بسیار اندک و غیر متحمل است و لذا این گازها هم حجم مواد منفجره اولیه باقی می‌مانند. این مطلب دلیل اصلی این نکته است که چرا فشار پشت جبهه انفجار بسیار بالاست. این فشار برای مواد منفجره نظامی در حدود Gpa 19 تا Gpa35 و برای مواد منفجره جاری کمتر است. همانطور که قبلاً ذکر گردید، موج دتونیشن مستقل از شرایط خارجی است. علیرغم این استقلال، جریان محصولات گازی که در پشت جبهه موج حرکت می‌کنند به زمان و شرایط مرزی وابسته است برای مثال یک بلوک مستطیل بزرگ از یک ماده منفجره را در نظر بگیرید که بر روی کل یکی از سطوح آن، به طور همزمان دتونیشن آغاز می‌شود. این سطح در خلا قرار دارد و هیچ مانعی برای انبساط گازها وجود ندارد. موج صفحه‌ای دتونیشن با سرعت ثابت بدرون ماده پیشروی می‌کند و گازهای حاصل از انفجار که بلافاصله در پشت این جبهه موج قرار دارند با سرعتی کمتر از سرعت موج که سرعت جرم نام دارد در همان جهت حرکت می‌کنند. اما در سطح عقبی، گازها مشغول فرار در جهت مخالف هستند (در اثر خلا). همچنین فشار گاز در پشت جبهه موج بسیار بالاست، ولی در خلا پشت سر، صفر است لذا فشار بصورت منحن وار بین ایندو موقعیت تغییر می‌کند. نموداری از تغییرات فشار و سرعت جرم برای یک ماده منفجره جامد در شکل زیر نشان داده شده است.

همانطور که ملاحظه می‌شود ناحیه همسایه منطقه واکنش بسیار کم تحت تاثیر تغییر شرایط مرزی قرار می‌گیرد.

آغاز همزمان دتونیشن از روی کل یک سطح مشکل است. در عمل آسانتر است که آغاز انفجار از یک نقطه باشد. در اینحالت موج دتونشین از یک نقطه درون ماده منفجره گسترش یافته و گرادیان فشار در اینحالت از آنچه در شکل صفحه قبل نشان داده شده، تیزتر خواهد بود.

وقتی از مواد منفجره برای راندن و بحرکت در آوردن سایر مواد و سازمان‌ها استفاده می‌شود محاسبه دقیق پروفیل فشار و سرعت جرم، ورودیهای لازم برای محاسبات حرکت سازه رانده شده می‌باشد. شکل این پروفیلها به معادله حالت محصولات انفجار وابسته‌اند، معادلاتی که تلاشهای بسیاری برای بدست آوردن آنها انجام شده و در دست انجام است.

3- موج شوک:[13]

یک موج شوک، جبهه شوک یا مختصراً یک شوک، موجی است که در ماده یک جهش[14] فشاری (یا تنشی) ناگهانی و تقریباً ناپیوسته ایجاد می‌کند، این موج بسیار سریعتر از امواج صوتی منتشر می‌شود، بدین معنی که این موج نسبت به محیط پیرامون خود فرا صوتی است و این خاصیت خود را بدون تغییر حفظ می‌کند.

موج شوک از جمله خواص اغلب مواد است و از خاصیتی از ماده که بر اساس آن سرعت انتقال صوت در ماده بصورت می‌باشد منتج می‌شود. اندیس s معرف حالت آنتروپی پایاست. این موج از نظر ترمودینامیکی برگشت ناپذیر است. و لذا آنتروپی سیستم در جبهه شوک در اثر لزجت و هدایت حرارتی افزایش می‌یابد. امواج شوک که امواج فشاری نیز نامیده می‌شوند، عامل شتابگیری ذرات ماده، در جهت انتشار خود هستند.

تاریخچه:

انرژی انفجار عمدتاً به عنوان ابزاری قدرتمند جهت تخریب به کار گرفته شده و اثرات سودمند آن کمتر مورد توجه و بررسی قرار گرفته است، با اینکه سالیان بسیاری است که بشر این انرژی توانمند را به کار گرفته، لکن از سال 1950 تحقیقات در ضمیمه بکارگیری آن در جهت تولید و سازندگی آغاز گردید.

آنچه در ابتدای مطالعات توجه محققان را معطوف خود داشت، چگونگی رفتار قطعه در مقابل امواج دینامیک ناشی از انفجار بود که در این راستا جهت بررسی تغییر شکل لحظه‌ای قطعات در مجاورت انفجار تلاشهایی صورت گرفته است.

با ابداعاتی که توسط Johnson انجام گرفت، روشهای شکل دهی انفجاری جایگاه خود را در اذهان پیدا کرد. وی در سالهای 1966 و 1967 با استفاده از مختصات اگر انرژی برای مسائل دو بعدی با تقارن مدوری تحت اثر ضرب در ناحیه الاستیک - پلاستیک، یک روش تحلیلی ارائه نمود و با ارائه مثالهایی نظیر گلوله کره و استوانه نیکلی (با سرعت 150) با صفحات ضخیم آلومینیومی، آنرا تشریح کرده.

Jones در سال 1972، طی مقاله مفصلی، به بیان چگونگی پاسخ فلز به بارگذاری ضربه‌ای ناشی از انفجار یک ماده منفجره در تماس با سطح آن پرداخت. در این مقاله، سلسله اتفاقاتی که در طی رخداد فرآیند انفجار در یک ماده منفجره رخ می‌دهد، چگونگی تولید و انتشار موج شوک در درون ماده منفجره و درون فلز و نیز برهمکنش موج شوک با فلز، به تفصیل توضیح داده شده است.

Pearson در سال 1972، در رابطه با روشهای کاربردی شکل‌دهی انفجاری، تحقیقاتی انجام داد و ضمن بیان پارامترهای موثر، فرآیندهای شکل‌دهی را با توجه به موقعیت ماده منفجره نسبت به سطح قطعه کار طبقه بندی نمود.

Zernow و Lieberman در سال 1972 با بیان چند مثال علمی، به بیان «تعامل ملاحظات فنی و اقتصادی» در فرآیندهای انفجاری پرداختند و در طی آن راهنماییهای ارزنده‌ای درباره نحوه ساخت و انتخاب جنس مواد مختلفی که تجهیزات سیستم شکل‌دهی باید از آنها ساخته شوند بنحوی که از لحاظ اقتصادی و فنی قابل توجیه باشند ارائه نمودند.

Heifitz در سال 1973 با ارائه مثالهائی در خصوص پوسته کروی و صفحه دایروی و مطالعه برآمدگی آنها پس از اعمال ضربه، ضمن توجه به تغییر شکلهای بزرگ و روند رشد کرنش پلاستیک با زمان، معادلات اساسی (روابط تنش- کرنش) را فقط به شکل عددی المان محدود به کار گرفته است.

Osaka و همکاران در سال 1986، تغییر شکل ورقهای گرد را برای ساخت مخازن تحت فشار، بوسیله انفجار در زیر آب و با استفاده از مختصات لاگرانژی و استفاده از روش تفاضل محدود مورد بررسی قرار داده‌اند و در بررسی معادلات تنش- کرنش، رفتار فلز را فقط بصورت الاستیک- کاملاً پلاستیک در نظر گرفته‌اند.

Fujita و همکاران در سال 1995 با ارائه سه مدل رفتاری در ناحیه الاستیک- پلاستیک صفحه فلزی تحت اثر بار ناگهانی با فشار یکنواخت را تحلیل نمودند و نشان دادند که اثر موجهای خمشی روی مکانیزم تغییر شکل، با روش تحلیلی یکسان است و حاصل کار هماهنگی خوبی را نشان می‌دهد، حتی اگر اثرات کرنش و نرخ سخت شوندگی آن بر روی تغییر شکلهای بوجود آمده منظور شود.

Comstockr و همکاران در سال 2001 روش جدیدی برای شبیه‌سازی آزمایشهای شکل‌دهی انفجاری صفحات، ارائه کردند و نشان دادند که این روش ابزار مهمی برای تشخیص شکل‌پذیری و تحمل بارهای خارجی برای آلیاژهاست. این شبیه‌سازی، بوسیله تئوری قوی و در محدوده بزرگی از تغییر شکل (تا حد کشش عمیق) انجام شده است، ولی در طی آن به عامل زمان و سرعت بارگذاری توجهی نشده است.

Mynors و Zhang در سال 2002 و در طی یک مقاله بسیار مفصل به بررسی همه جانبه تواناییها و قابلیت‌های شکل‌دهی انفجاری پرداختند. در تاریخچه این اثر تحقیقی، روندی که در طی آن فرآیند شکل‌دهی انفجاری به یک روش تولیدی موفق و سودمند تبدیل شده است شرح داده شده است.

در طی یک ده اخیر توسط لیاقت و همکاران، تحقیقات گسترده‌ای در داخل کشور، بر روی فرآیندهای شکل‌دهی در سرعتهای بالا انجام گرفته و در حال انجام است مخصوصاً آزمایشهای شکل‌دهی انفجاری آنان که به منظور تولید قطعات مخروطی برای کاربردهای نظامی و غیر نظامی انجام گرفت. بسیار قابل توجه است.

درویزه، پاشایی در سال 1381 با ساحت دستگاه شکل‌دهی ورقهای فلزی بروش انفجار مخلوط گازها، فعالیت‌های داخلی را وارد مرحله جدیدی نمود. استفاده از گاز بعنوان ماده منفجره یکی از جدیدترین رویکردهای شکل‌دهی انفجاری است.



شکل‌دهی فلزات با سرعت بالا:

فرایندهای شکل‌دهی فلزات در سرعت بالا (H.V.F) High Velocity Forming یکی از دستاوردهای مهم و ارزشمند صنعتی در عصر اتم و فضا محسوب می‌شود. این فرایندها ثابت کرده‌اند که در حل بسیاری از مسائل و مشکلات تولید که با استفاده از روشهای صنعتی بسیار مشکل، زمانبر و گران تمام می‌شود. بسیار مفید و توانمند هستند بزرگ شدن ابعاد قطعه‌کار، لزوم استفاده از مواد بسیار سخت و مقاوم در برابر روشهای متداول ماشینکاری و لزوم تولید قطعاتی دقیق و پیچیده از عوامل توسعه و پیشرفت دانش فنی این روش محسوب می‌شود اما عمده‌ترین مزیت این روشها، قابلیت آنها برای شکل‌دهی قطعات یکپارچه بسیار پیچیده، تنها در یک مرحله کاری می‌باشد. در حالیکه تولید چنین قطعاتی با روشهای سنتی تولید، ممکن است در چند مرحله و به کمک چندین فرایند جداگانه انجام شود و در نهایت به تولید یک سازه جوشکاری شده بینجامد. ]1[

گستردگی و تنوع منابع انرژی و روشهای اعمال آن برای تغییر شکل قطعه کار، سطح و توانایی روشهای شکل‌دهی سریع را قابل مقایسه و رقابت با روشهای سنتی شکل نموده است گسترده موادی که در این روش قابل استفاده‌اند بسیار متنوع است. فلزاتی چون آلومینیم، بریلویم، تیتانیوم، فولادهای کربنی و آلیاژی، سوپر آلیاژا، فولادضد زنگ، مس، برنج و ... بطور گسترده در این روش استفاده می‌شوند. ]1[

رفتار ماده در شکل‌دهی آن بسیار مهم است و فاکتورهائی چون اثر سرعت بر شکل‌پذیری و مقاومت ماده، پایداری هندسی و اثرات موج بر روی قطعه کار باید مد نظر قرار گرفته شود. همچنین اصطکاک بین سطح قطعه کار و سطح قالب نیز از جمله نکات مهم محسوب می‌شود. ضریب اصطکاک معمولاً با افزایش سرعت نسبی بین قطعه، قالب کاهش می‌یابد. در نتیجه این افزایش سرعت، دما به مقدار قابل ملاحظه‌ای افزایش خواهد یافت و در نتیجه روانساز بین قطعه و قالب تجزیه شده و از بین خواهد رفت. در سرعتهای بالا، دما ممکن است بعدی بالا که یک لایه نازک از فلز در سطح تماس قطعه و قالب ذوب شده و خود بعنوان روانساز عمل کند. ]1[

ضرورتهای استفاده از شکل‌دهی با سرعت بالا عبارتند از:

مواد منفجره ضعیف: ]6[

انفجارهای ضعیف در فضاهای محدود انجام می گیرند و مواد منفجره ضعیف معمولاً در ترکیبات بصورت ذرات دانه‌ای شکل به اشکال و اندازه‌های مختلف ساخته می‌شوند. سوزش این نوع مواد با گرما شروع می‌شوند و سوزاندن با افزایش فشار بطور خطی افزایش می‌یابد و ماکزیمم فشار متناسب با بار دانسیته خالی شده می‌باشد (حجم تقریبی مواد منفجره سوخته شده/ وزن مواد منفجره= دانسیته بار)، فشار تقریبی pa108×5/3 از دانسیته بار 26/0 گرم در سانتی‌متر مکعب نتیجه می‌شود زمان دست یافتن به فشار ماکزیمم و مدت سوختن معمولاً در محدوده 5 تا 25 میکروثانیه می‌باشد. دانسیته بار، شکل و اندازه دانه‌های مواد منفجره در قابلیتهای انواع منفجره تاثیرگذار هستند.

2- مواد منفجره قوی: ]6[

وسیع‌ترین مواد منفجره مورد مصرف دارای ترکیبات شیمیایی واحدی هستند که معمولاً از ترکیبات نیتروژن همراه با مخلوط الکلها و اسید نیتریک ساخته می‌شود. ماده اصلی با ترکیباتی از نرم کننده‌های چسباننده‌ها و پرکننده‌ها مخلوط می‌گردند. از شکسته شدن مولکول ماده منفجره، منواکسید کربن، دی اکسید کربن آب و مقدار زیادی انرژی تولید می‌شود.

فرآیند انفجار بصورت پیوسته در مدت زمان کوتاهی اتفاق می‌افتد، سرعت انفجار مواد منفجره بکار رفته بطور عادی تقریباً 6100 است، فشار بطور آنی در جلو انفجار حدود pa109×9/6 می‌رسد انفجار در مواد منفجره تجارتی با چاشنی آغاز می‌شود.


مکانیزم شکست در اثر انفجار

عبور امواج حاصل از انفجار باعث ایجاد تنش های کششی و فشاری در سنگ شده و توده سنگ را از لحاظ رفتار مکانیکی و دینامیکی تحریک می نماید در بررسی کارایی مواد منفجر ه و به طور کلی ارزیابی کیفیت انفجار، داشتن اطلاع دقیق از رفتار سنگ تحت تنش های ناشی از انفجار و کیفیت انتقال و توزیع انرژی حاصله از آتشکاری نقش بسزایی دارند
دسته بندی معدن
بازدید ها 38
فرمت فایل doc
حجم فایل 3926 کیلو بایت
تعداد صفحات فایل 75
مکانیزم شکست در اثر انفجار

فروشنده فایل

کد کاربری 15
کاربر

عبور امواج حاصل از انفجار باعث ایجاد تنش های کششی و فشاری در سنگ شده و توده سنگ را از لحاظ رفتار مکانیکی و دینامیکی تحریک می نماید . در بررسی کارایی مواد منفجر ه و به طور کلی ارزیابی کیفیت انفجار، داشتن اطلاع دقیق از رفتار سنگ تحت تنش های ناشی از انفجار و کیفیت انتقال و توزیع انرژی حاصله از آتشکاری نقش بسزایی دارند.

پدیده رشد ترک در مواد سنگی مسأله پیچیده‌ای است و اغلب نیازمند تکنیک‌های پیشرفته‌ای جهت پیش‌بینی هندسه شکست می‌باشد. فرایند شکست با جوانه‌زنی ترک شروع می‌شود که وابسته به چقرمگی شکست است و بنابراین دقت هرگونه مدل‌سازی و نتایج آن به مقدار چقرمگی شکست سنگ بستگی دارد. از این رو تعیین مقدار چقرمگی شکست اهمیت ویژه‌ای دارد. اولین تلاش‌ها توسط اشمیت به منظور تعیین مقدار چقرمگی شکست سنگ‌ها بر مبنای روش تست استانداردی صورت پذیرفت که برای اندازه‌گیری چقرمگی شکست کرنش صفحه‌ای مواد فلزی پیشنهاد شده بود . به دنبال آن کارهای آزمایشگاهی فراوانی جهت تعیین چقرمگی شکست سنگ‌های مختلف با استفاده از نمونه‌هایی متفاوت صورت گرفت .صحت نتایج روش‌های تست تدوین‌شده نیازمند نمونه‌هایی با ابعاد هندسی بزرگ و هزینه‌های گران ماشین‌کاری بود که در عمل تهیه آنها از موادسنگی گاهی غیرممکن و یا غیرعملی بود تا اینکه نمونه‌های[1] Core معرفی شدند که نسبت به سایر نمونه‌ها مزایای متعددی داشتند. مکانیک شکست سنگ به طور گسترده ای در فرایند آتشباری سنگها، شکست هیدرولیکی، تحلیل شیبهای سنگی، ژئوفیزیک، مکانیک زلزله، استخراج انرژی ژئوترمال زمین، حفاری های زیرزمینی، حفاری چاههای نفت و در بسیاری از مسائل کاربرد فراوانی دارد . هنگامی که یک سنگ ترک یا شکست ذاتی دارد، رفتار مکانیکی پیرامون انتهای ترک، فاکتور مهمی است که باید در طراحی و پایداری فرایندهای ذکر شده موردتوجه قرار گیرد . این مطالعه، کاربرد مکانیک شکست را برای مشخص کردن خصوصیات شکست بررسی میکند.هدف اصلی این تحقیق بررسی مکانیزم شکست سنگ در اثر انفجار –بخش عمده شکستگی سنگ و ایجاد درز و ترک چقرمگی و مقاومت سنگ و همچنین اهداف دیگر این تحقیق تحلیل عددی و میدانی انتشار امواج و ترکهای حاصل از انفجار پیش شکافی در توده سنگ، تحلیل عددی مکانیزم شکست پایه های سنگی در معادن عمیق، تعیین چقرمگی شکست یک نوع سنگ با استفاده از یک قطعه آزمایشگاهی اصلاح شده، اندازه گیری چقرمگی شکست سنگ و بررسی خصوصیات شکست آن تحت شرایط بارگذاری مرکب با استفاده از روشهای عددی و آزمایشگاهی، تحلیل اجزاء محدود نمونه CNSR جهت تعیین چقرمگی شکست مواد سنگی

کلمات کلیدی : شکتگی سنگ ،چقرمگی سنگ ،مکانیک سنگ

[1] Based Chevron Notched Specimens

فهرست مطالب

چکیده:‌ح

فصل اول کلیات... 1

مقدمه. 2

1-1-عوامل موثر بر کیفیت انتقال انرژی حاصله از آتشکاری.. 3

1-2-پارامتر های موثر در کیفیت انتقال انرژی.. 3

1-3-امپدانس سنگ و ماده منفجره3

1-4-ضریب امپدانس و ضریب جفت شدگی.. 4

1-5-تعریف متغیر های تحقیق.. 4

1-5-1-چقرمگی شکست... 4

1-5-2-مکانیک شکست... 5

1-6-مقاومت و مکانیک سنگها6

1-6-1-خواص مکانیکی سنگها6

1-6-2-مغزه گیری و آماده سازی نمونه:7

1-7- ویژگیهای مقاومت:8

1-7-1-شکست:8

1-7-2-مقاومت پسماند:8

1-8-تعیین مقاومت فشاری یک محوره8

1-8-1-عوامل موثر بر مقاومت فشاری:9

1-9-آنالیز فرآیند شکست سنگ.... 12

1-9-1-آتشکاری سنگ، دارای دو اثر می باشد:12

1-9-1-1-فشار دینامیکی:12

1-9-1-2- فشار استاتیکی:12

1-9-2-مکانیزم آتشکاری متوسط نامحدود. 13

1-10- زون شکست (زون فشرده شده ) :14

1-11-زون شکست (زون گسیختگی) :15

1-12-زون ارتعاش الاستیک :16

فصل دومادبیات تحقیق.. 17

2-1- عملیات درمعدن. 18

2-2- مشخصات پارامترهای شکست سنگ.... 18

2-3- شکست سنگ بعد از انفجار در معدن روباز. 19

2-4 روشهای آزمایشگاهی تعیین چقرمگی شکست سنگ در حالت کشش و برش... 20

2-4-1- نمونه های (SR):20

2-4-2-نمونه های (CB) :21

2-4-3- نمونه های (CCNBD) :22

2-4-4-نمونه های (SNSCB):23

2-5-روش PTS)) :24

2-6- تحقیقات انجام شده25

فصل سومروش های تحقیقات... 29

3- روش های تحقیقاتی برای ارتعاشات ناشی از انفجار. 30

3-1- شاخص های چگالی ارتعاش... 30

3-1-1-رابطه تجربی میرایی.. 30

3-2- تعیین چقرمگی شکست یک نوع سنگ ب ااستفاده از یک قطعه آزمایشگاه ی اصلاح شده33

3-2-1- معرفی روش تست جدید. 34

3-3- اندازه گیری چقرمگی شکست سنگ و بررسی خصوصیات شکست آن تحت شرایط بارگذاری مرکب... 36

3-4- تحلیل اجزاء محدود نمونه CNSR جهت تعیین چقرمگی شکست مواد سنگی.. 36

فصل چهارمیافته ها و نتایج.. 39

4-1- مکانیزم شکست سنگ.... 40

4-2-چقرمگی شکست :40

4-3-حالت های مختلف گسترش ترک :40

4-4- فشار چال، فشار انفجار و نواحی اطراف چال انفجار. 41

4-5- معیارهای تجربی پیش بینی شعاعهای آسیب اطراف چال انفجار. 42

4-6- براساس یک معیار سرانگشتی :43

4-7- برآورد مناطق پودر شده و ترکهای شعاعی اطراف چال انفجاری.. 44

4-8- عوامل اصلی میرایی امواج لرزهای :45

4-9- آزمایش های میدانی.. 45

4-9-1- تعیین ماکزیمم مقدار خرج در هر تاخیر. 45

4-9-2- نمودارهای عملی آتش باری.. 47

4-9-3- تداخل طول موج.. 49

4-3- تحلیل عددی مکانیزم شکست پایه های سنگی د رمعادن عمیق.. 51

4-4- تشریح تستهای آزمایشگاهی.. 53

4-5- خصوصیات مصالح.. 54

4-5-1-مدل المان محدود. 55

فصل پنجم نتیجه گیری.. 59

نتیجه. 60

منابع. 64

فهرست اشکال

عنوان صفحه

شکل 1-1-مقایسه ی دو رفتار شکننده و شکل پذیر سنگ در اثر بار گذاری.. 9

شکل 1-2-تاثیر اثر انتهایی نمونه بر روی شکست سنگ.... 10

شکل 1-3- آزمایش مقاومت فشاری یک محوره سنگ با توجه به نسبت ارتفاع به قطر. 11

شکل 1-4-شکل شماتیکی دیاگرام تاثیرات آسیبی آتشکاری.. 14

شکل 2-1- هندسه و نحوه ی بارگذاری نمونه sr (Ouchterlony , 1988 )21

شکل 2-2- هندسه و نحوه ی بارگذاری نمونه CB ( ouchterlony , 1988)22

شکل 2-3- هندسه ، نحوه بارگذاری و مراحل ایجاد شکاف در نمونه (khan and Al –shayea ,2000) SNSCB.. 23

شکل2-4- هندسه نمونه ، نحوه بارگذاری و نمای شماتیک از نوک ترک قبل و بعد از تغییر شکل برای PTS –test ( Backers et al ,2002 )25

شکل 3-1- صورت گرافیکی نقاط اندازه گیری و منحنی رگرسیون. 32

شکل 3-2- قطعه SCB (ترک زاویه دار – تکیه گاه ها متقارن)34

شکل 3-3- قطعه ASCB (ترک مستقیم – تکیخ گاه ها نامتقارن )35

شکل 4-1-سه مود اصلی انتشار ترک.... 41

شکل 4-2- مقطع چال انفجار و مناطق پنج گانه اطراف آن براساس پیشنهاد ایورسن و هماران (2008)42

شکل 4-3-تغییرات تنش فشاری به کششی در اثر بازتاب از سطح آزاد در فاصله 20 متری از مرکز انفجار. 45

شکل 4-4-فرکانس ارتعاش از وقایع ثبت شده47

شکل 4-5-نمودار تخمین PPV براساس Q,R.. 48

شکل 4-6-نمودار برآورد ماکزیمم خرج ویژه برپایه PPV , R.. 48

شکل4-7-هندسهمدلساختهشدهواستفادهشدهدرتحلیلعددی.. 52

شکل 4-8- منحنیتیپبارجابجاییبراییکپایه. 52

شکل 4-9- منحنیرفتارپایهدرشرایطتودهسنگباصلبیتپائین.. 52

شکل 4-10 - منحنیرفتارپایهدرشرایطتودهسنگاحاطهکنندهباصلبیتبالا.. 53

شکل4-11-نحوهانجامتستبااستفادهازروش ASCB.. 54

شکل 4-12-هندسهنمونهآزمایشاصلاحشده Arcan.. 55

شکل 4-13-نمونهودستگاهاصلاحشده Arcan.. 56

شکل4-14-طرحیکمدلمشبندیشدهکاملازدستگاهونمونهاصلاحشده Arcan الف) قبلازبارگذاریب) بعدازبارگذاری 56

شکل 4-15-المانهایسینگولاراطرافراسترک.... 57

شکل 5-1- مقایسهنتایجچقرمگیشکستحاصلازتستآزمایشگاهیو. معیار MTS درمودهایمختلف.... 61

شکل5-2-تاثیرزاویهبارگذاریبرمقادیرنرخانرژیکرنشیآزادشدهکل (GT). 62

شکل5-3-تاثیرزوایایبارگذاریبرنرخانرژیآزادشدهکل،نرخانرژیآزادشدهمدکششیومدبرشی وانرژیمحاسبهشدهتوسط –J انتگرالدریکنمونهسنگآهک.... 63

شکل5-4-تاثیر زوایای بارگذاری بر مقادیر فاکتور شدت تنش برای یک نمونه سنگ آهک.... 63

فهرست جداول

عنوان صفحه

جدول 1-1- مغزه گیری و آماده سازی نمونه. 7

جدول 3-1- پارامترهای پایه مربوط به ارتعاشات ناشی از آتش باری و نتایج آزمایش های میدانی.. 31

جدول 4-1- روابط گوناگون برآورد منطقه پودر شده و ترکهای شعاعی اطراف چال انفجار. 44

جدول 4-2-اجازه ارتعاش ناشی از انفجار بر اساس استاندارد چین.. 46

جدول 4-3- نتایج موفقیت کاهش ارتعاشات و میزان کاهش در ارتعاشات... 50

جدول4-4اطلاعات استفاده شده در تحلیل عددی.. 51

جدول4-5-مشخصات مکانیکی سنگهای مورد استفاده در تحلیلهای المان محدود. 54

جدول 4-6- مقایسه بین روش های مختلف ارائه شده برای اندازه گیری چقرمگی شکست سنگ.... 58