دسته بندی | الکترونیک و مخابرات |
بازدید ها | 50 |
فرمت فایل | doc |
حجم فایل | 68 کیلو بایت |
تعداد صفحات فایل | 22 |
*تیریستور یا یکسو کننده قابل کنترلp-n-p-n
1-1-تیریستور (یا یکسو کننده قابل کنترل p-n-p-n )
تیریستور یک وسیله نیمه هادی چهار لایه سه اتصالی با سه خروجی است و از لایه های نوع p و n سیلیکونی که به طور متناوب قرار گرفته اند ساخته شده اند .. ناحیه p انتهایی آند ، ناحیه n انتهای کاتد و ناحیه p داخلی دریچه یا گیت[1] است . آند از طریق مدار به طور سری به کاتد وصل می شود . این وسیله اساساً یک کلید است و همواره تا زمانی که به پایانه های آند و دریچه ولتاژ مثبت مناسبی به کاتد اعمال نشده است در حالت قطع (حالت ولتاژ مسدود کننده ) باقی می ماند و امپدانس بینهایتی از خود نشان خواهد داد . در حالت وصل و عبور جریان بدون احتیاج به علامت[2] (یا ولتاژ) بیشتری روی دریچه به عبور جریان ادامه خواهد داد . در این حالت به طور ایده آل هیچ امپدانسی در مسیر جریان از خود نشان نمی دهد . برای قطع کلید و یا برگرداندن تیریستور به حالت خاموشی بایستی روی دریچه علامت و یا ولتاژی نباشد و جریان در مسیر آند به کاتد به صفر تقلیل یابد . تیریستور عبور جریان را فقط در یک جهت امکان پذیر می سازد .
اگر به پایانه های تیریستور ولتاژ بایاس خارجی اعمال نشود ، حاملهای اکثریت در هر لایه تا زمانی که ولتاژ الکتروستاتیکی داخلی[3] به وجود آمده از انتشار بیشتر حاملها جلوگیری کند ، منتشر می شوند . اما بعضی از حاملهای اکثریت انرژی کافی جهت عبور از سد تولید شده توسط میدان الکتریکی ترمزکن[4] هر اتصال را دارد . این حاملها پس از عبور ، تبدیل به حاملهای اقلیت می شوند و می توانند با حاملهای اکثریت ترکیب شوند . حاملهای اقلیت هر لایه نیز می توانند توسط میدان الکتریکی ثابتی در هر یک از اتصالها شتابدار شوند ، ولی چون در این حالت (از خارج ولتاژی اعمال نمی شود) مدار خارجی وجود ندارد مجموع جریانهای حاملهای اقلیت و اکثریت بایستی صفر شود .
حال اگر یک ولتاژ بایاس با یک مدار خارجی برای حمل جریانهای داخلی منظور شود ، این جریان ها شامل قسمتهای زیر خواهند
بود.
جریان ناشی از :
1-عبور حاملهای اکثریت (حفره ها ) از اتصال
2-عبور حاملهای اقلیت از اتصال
3-حفره های تزریق شده به اتصال که از طریق ناحیه n اشاعه
می یابند اتصال را قطع می کند .
4-حاملهای اقلیت از اتصال که از طریق ناحیه n اشاعه یافته و از اتصال عبور کرده است . عیناً نیز از شش قسمت و از چهار قسمت تشکیل خواهد یافت .
برای تشریح اصول کار تیریستور از دو روش متشابه[5] مدلهای دیودی و یا دو ترانزیستوری می توان استفاده کرد .
(الف) مدلهای دیودی تیریستور
تیریستور که یک نیمه هادی سه اتصالی ، شبیه سه دیودی است که به طور سری اتصال یافته اند . اگر دریچه بایاس نشود ولی به دو سر آند و کاتد ولتاژ بایاسی اعمال شود این ولتاژ هر قطبیتی[6] که داشته باشد همواره حداقل یک اتصال معکوس بایاس شده ، وجود خواهد داشت تا از هدایت تیریستور جلوگیری کند .
اگر کاتد توسط ولتاژ منبع تغذیه (نسبت به آند ) منفی شود و دریچه نسبت به کاتد به طور مثبت بایاس شود لایه p دریچه توسط کاتد از الکترون لبریز می شود و خاصیت خودش را به عنوان لایه p از دست می دهد . در نتیجه تیریستور به دیود هدایتی معادلی تبدیل می شود .
(ب)مدل دو ترانزیستوری تیریستور
پولک p-n-p-n را می توان به صورت دو ترانزیستور با دو ناحیه پایه در نظر گرفت . کلکتور ترانزیستور n-p-n ، جریان محرکی برای پایه ترانزیستور p-n-p که جریان کلکتورش اضافه جریان دریچه به مثابه جریان محرک[7] پایه ترانزیستور n-p-n است ، مهیا کند .
برای روشن کردن تریستور جریان دریچه به جزء خیلی حساس ترانزیستور n-p-n از اتصال p-n-p-n اعمال می شود . اولین ده درصد افزایش جریان آند ، در اصل جریان کلکتور ترانزیستور n-p-n است . پایه n ترانزیستور p-n-p توسط جریان کلکتور ترانزیستور n-p-n باردار می شود . در نتیجه فیدبک مثبتی توسط جریان کلکتور ترانزیستور p-n-p به منظور افزایش بارهای ایجاد شده در پایه p ترانزیستور n-p-n دایر می شود . به این ترتیب جریان تیریستور شروع به افزایش می کند ، به سرعت به مقدار اشباع می رسد و جریان تیریستور فقط توسط امپدانس بار محدود
می شود .
بهتر است به منظور تشریح مشخصه و خواص تیریستور حالتهای مختلف آن را (از نظر بایاس ) مورد بررسی قرار دهیم .
[1] -Gate 2-signal
[3]-Built - in voltage 2-Retarding electric field
[5] -Analogue 2-Polarity
[7] -Drive